home *** CD-ROM | disk | FTP | other *** search
/ IRIX Base Documentation 2002 November / SGI IRIX Base Documentation 2002 November.iso / usr / share / catman / p_man / cat3 / SCSL / intro_lapack.z / intro_lapack
Encoding:
Text File  |  2002-10-03  |  106.7 KB  |  1,717 lines

  1.  
  2.  
  3.  
  4. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  5.  
  6.  
  7.  
  8. NNNNAAAAMMMMEEEE
  9.      IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK - Introduction to LAPACK solvers for dense linear systems
  10.  
  11. IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
  12.      See individual man pages for implementation details
  13.  
  14.      These routines are part of the SCSL Scientific Library and can be loaded
  15.      using either the ----llllssssccccssss or the ----llllssssccccssss____mmmmpppp option.  The ----llllssssccccssss____mmmmpppp option
  16.      directs the linker to use the multi-processor version of the library.
  17.  
  18.      When linking to SCSL with ----llllssssccccssss or ----llllssssccccssss____mmmmpppp, the default integer size is
  19.      4 bytes (32 bits). Another version of SCSL is available in which integers
  20.      are 8 bytes (64 bits).  This version allows the user access to larger
  21.      memory sizes and helps when porting legacy Cray codes.  It can be loaded
  22.      by using the ----llllssssccccssss____iiii8888 option or the ----llllssssccccssss____iiii8888____mmmmpppp option. A program may use
  23.      only one of the two versions; 4-byte integer and 8-byte integer library
  24.      calls cannot be mixed.
  25.  
  26. DDDDEEEESSSSCCCCRRRRIIIIPPPPTTTTIIIIOOOONNNN
  27.      The preferred solvers for dense linear systems are those parts of the
  28.      LAPACK package that are included in the current version of the SGI
  29.      Scientific Computing Software Library (SCSL).
  30.  
  31.    LLLLAAAAPPPPAAAACCCCKKKK RRRRoooouuuuttttiiiinnnneeeessss
  32.      LAPACK is a public domain library of subroutines for solving dense linear
  33.      algebra problems, including the following:
  34.  
  35.      *   Systems of linear equations
  36.  
  37.      *   Linear least squares problems
  38.  
  39.      *   Eigenvalue problems
  40.  
  41.      *   Singular value decomposition (SVD) problems
  42.  
  43.      For details about which routines are supported, see "LAPACK Routines
  44.      Contained in the Scientific Library," which follows.
  45.  
  46.      The LAPACK package is designed to be the successor to the older LINPACK
  47.      and EISPACK packages.  It uses today's high-performance computers more
  48.      efficiently than the older packages.  It also extends the functionality
  49.      of these packages by including equilibration, iterative refinement, error
  50.      bounds, and driver routines for linear systems, routines for computing
  51.      and reordering the Schur factorization, and condition estimation routines
  52.      for eigenvalue problems.
  53.  
  54.      Performance issues are addressed by implementing the most
  55.      computationally-intensive algorithms by using the Level 2 and 3 Basic
  56.      Linear Algebra Subprograms (BLAS).  Because most of the BLAS were
  57.      optimized in single- and multiple-processor environments, these
  58.      algorithms give near optimal performance.
  59.  
  60.  
  61.  
  62.  
  63.                                                                         PPPPaaaaggggeeee 1111
  64.  
  65.  
  66.  
  67.  
  68.  
  69.  
  70. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  71.  
  72.  
  73.  
  74.      The original Fortran programs are described in the _L_A_P_A_C_K _U_s_e_r'_s _G_u_i_d_e by
  75.      E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A.
  76.      Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen,
  77.      published by the Society for Industrial and Applied Mathematics (SIAM),
  78.      Philadelphia, 1992.  The manual is also available online at
  79.      hhhhttttttttpppp::::////////wwwwwwwwwwww....nnnneeeettttlllliiiibbbb....oooorrrrgggg////llllaaaappppaaaacccckkkk////lllluuuugggg////iiiinnnnddddeeeexxxx....hhhhttttmmmmllll.
  80.  
  81.    LLLLAAAAPPPPAAAACCCCKKKK RRRRoooouuuuttttiiiinnnneeeessss CCCCoooonnnnttttaaaaiiiinnnneeeedddd iiiinnnn tttthhhheeee SSSScccciiiieeeennnnttttiiiiffffiiiicccc LLLLiiiibbbbrrrraaaarrrryyyy
  82.      All of the real and complex routines from LAPACK 3.0 are supported in
  83.      SCSL.  This includes driver routines and computational routines for
  84.      solving linear systems, least squares problems, and eigenvalue and
  85.      singular value problems.  Selected auxiliary routines for generating and
  86.      manipulating elementary orthogonal transformations are also supported.
  87.  
  88.      The LAPACK routines in SCSL are described online in man pages.  For
  89.      example, to see a description of the arguments to the expert driver
  90.      routine for solving a general system of equations, enter the following
  91.      command:
  92.  
  93.           % man sgesvx
  94.  
  95.  
  96.      The user interface to all supported LAPACK routines is exactly the same
  97.      as the standard LAPACK interface.
  98.  
  99.      Tuning parameters for the block algorithms provided in the SCSL are set
  100.      within the LAPACK routine IIIILLLLAAAAEEEENNNNVVVV(3S).  IIIILLLLAAAAEEEENNNNVVVV(3S) is an integer function
  101.      subprogram that accepts information about the problem type and
  102.      dimensions, and it returns one integer parameter, such as the optimal
  103.      block size, the minimum block size for which a block algorithm should be
  104.      used, or the crossover point (the problem size at which it becomes more
  105.      efficient to switch to an unblocked algorithm).  The setting of tuning
  106.      parameters occurs without user intervention, but users may call
  107.      IIIILLLLAAAAEEEENNNNVVVV(3S) directly to discover the values that will be used (for
  108.      example, to determine how much workspace to provide).
  109.  
  110.    CCCCaaaalllllllliiiinnnngggg LLLLAAAAPPPPAAAACCCCKKKK RRRRoooouuuuttttiiiinnnneeeessss ffffrrrroooommmm CCCC
  111.      Although LAPACK is a library of Fortran 77 subroutines, C and C++ users
  112.      have full access to LAPACK functionality provided that they follow
  113.      conventions documented in Chapter 8 of the MMMMIIIIPPPPSSSSpppprrrroooo 7777 FFFFoooorrrrttttrrrraaaannnn 99990000 CCCCoooommmmmmmmaaaannnnddddssss
  114.      aaaannnndddd DDDDiiiirrrreeeeccccttttiiiivvvveeeessss RRRReeeeffffeeeerrrreeeennnncccceeee MMMMaaaannnnuuuuaaaallll, "Interlanguage Calling" (available from
  115.      hhhhttttttttpppp::::////////tttteeeecccchhhhppppuuuubbbbssss....ssssggggiiii....ccccoooommmm////).  The large majority of LAPACK routines can be
  116.      called from C/C++ using the following four rules:
  117.  
  118.      *   The name of the LAPACK subprogram must be declared in the C/C++
  119.          program using all lowercase letters, appended with a trailing
  120.          underscore.
  121.  
  122.      *   The correspondence between Fortran and C data types is as follows:
  123.  
  124.               Fortran                 C/C++
  125.               -------                 -----
  126.  
  127.  
  128.  
  129.                                                                         PPPPaaaaggggeeee 2222
  130.  
  131.  
  132.  
  133.  
  134.  
  135.  
  136. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  137.  
  138.  
  139.  
  140.               INTEGER                 int       (32-bit integer library)
  141.                                       long long (64-bit integer library)
  142.               LOGICAL                 int       (32-bit integer library)
  143.                                       long long (64-bit integer library)
  144.               REAL                    float
  145.               DOUBLE PRECISION        double
  146.               COMPLEX                 struct{float real, imag;};
  147.               DOUBLE COMPLEX          struct{double real, imag;};
  148.               CHARACTER               char
  149.  
  150.  
  151.      *   All subroutine arguments should be passed by reference.
  152.  
  153.      *   The LAPACK routines expect multidimensional arrays to be stored in
  154.          column-major format in a contiguous region of memory.
  155.  
  156.      Note that the list above represents a subset of the general set of
  157.      interlanguage calling conventions described in the Fortran 90 reference
  158.      manual.  Character strings, in particular, require special handling when
  159.      passed as subroutine arguments or when returned from a function:  if a
  160.      string is longer than one character in extent, its length must be passed
  161.      as an additional argument.  Since most LAPACK subprograms employ
  162.      character strings of length one, however, this special case can usually
  163.      be ignored.  Two important exceptions, IIIILLLLAAAAEEEENNNNVVVV(3S) and XXXXEEEERRRRBBBBLLLLAAAA(3S), are
  164.      discussed more fully below.
  165.  
  166.      To call the double precision Cholesky factorization routine DDDDPPPPOOOOTTTTRRRRFFFF(3S),
  167.      for example, the following prototype and code might apply:
  168.  
  169.           void dpotrf_(char *, int *, double *, int *, int *);
  170.  
  171.           char uplo;
  172.           int info, lda, n;
  173.           double a[1000][1001];
  174.  
  175.           uplo = 'U';
  176.           lda = 1001;
  177.           n = 1000;
  178.           dpotrf_(&uplo, &n, (double *) a, &lda, &info);
  179.  
  180.      Or, to calculate the eigenvalues and eigenvectors of a double complex
  181.      Hermitian matrix using ZZZZHHHHEEEEEEEEVVVVDDDD(3S) from the 64-bit integer version of
  182.      SCSL, one might have:
  183.  
  184.           typedef struct {double real, imag;} zomplex;
  185.  
  186.           void zheevd_(char *, char *, long long *, zomplex *,
  187.                        long long *, double *, zomplex *, long long *,
  188.                        double *, long long *, long long *, long long *,
  189.                        long long *);
  190.  
  191.           char jobz, uplo;
  192.  
  193.  
  194.  
  195.                                                                         PPPPaaaaggggeeee 3333
  196.  
  197.  
  198.  
  199.  
  200.  
  201.  
  202. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  203.  
  204.  
  205.  
  206.           long long info, lda, liwork, lrwork, lwork, n;
  207.           long long *iwork;
  208.           double *rwork, *w;
  209.           zomplex *a, *work;
  210.  
  211.           ...
  212.           (array allocations and variable assignments)
  213.           ...
  214.  
  215.           zheevd_(&jobz, &uplo, &n, a, &lda, w, work, &lwork, rwork,
  216.                   &lrwork iwork, &liwork, &info);
  217.  
  218.      Two LAPACK routines involving character string arguments are XXXXEEEERRRRBBBBLLLLAAAA(3S)
  219.      and IIIILLLLAAAAEEEENNNNVVVV(3S).  The corresponding C/C++ prototypes, assuming 32-bit
  220.      integers in the former case and 64-bit integers in the latter, would be
  221.  
  222.           void xerbla_(char *, int *, const int);
  223.  
  224.           long long ilaenv_(long long *, char *str1, char *str2, long long *,
  225.                             long long *, long long *, long long *,
  226.                             const int len_str1, const int len_str2);
  227.  
  228.      Here the lengths of the strings are passed as implicit arguments, in
  229.      order of use, following the explicit argument list.  Note that,
  230.      regardless of the default integer size in the version of SCSL one uses,
  231.      the length of the character string is always passed as type int.
  232.  
  233.    NNNNaaaammmmiiiinnnngggg SSSScccchhhheeeemmmmeeee
  234.      The name of each LAPACK routine is a coded specification of its function
  235.      (within the limits of the FORTRAN 77 standard for six-character names).
  236.  
  237.      All driver and computational routines have five- or six-character names
  238.      of the form _X_Y_Y_Z_Z or _X_Y_Y_Z_Z_Z.
  239.  
  240.      The first letter in each name, _X, indicates the data type, as follows:
  241.  
  242.      SSSS      RRRREEEEAAAALLLL
  243.  
  244.      DDDD      DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN
  245.  
  246.      CCCC      CCCCOOOOMMMMPPPPLLLLEEEEXXXX
  247.  
  248.      ZZZZ      DDDDOOOOUUUUBBBBLLLLEEEE CCCCOOOOMMMMPPPPLLLLEEEEXXXX
  249.  
  250.      The next two letters, _Y_Y, indicate the type of matrix (or the
  251.      most-significant matrix).  Most of these two-letter codes apply to both
  252.      real and complex matrices, but a few apply specifically to only one or
  253.      the other.  The matrix types are as follows:
  254.  
  255.      BBBBDDDD     BiDiagonal
  256.  
  257.  
  258.  
  259.  
  260.  
  261.                                                                         PPPPaaaaggggeeee 4444
  262.  
  263.  
  264.  
  265.  
  266.  
  267.  
  268. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  269.  
  270.  
  271.  
  272.      DDDDIIII     Diagonal
  273.  
  274.      GGGGBBBB     General Band
  275.  
  276.      GGGGEEEE     GEneral (nonsymmetric)
  277.  
  278.      GGGGGGGG     General matrices, Generalized problem
  279.  
  280.      GGGGTTTT     General Tridiagonal
  281.  
  282.      HHHHBBBB     Hermitian Band (complex only)
  283.  
  284.      HHHHEEEE     HErmitian (possibly indefinite) (complex only)
  285.  
  286.      HHHHGGGG     Hessenberg matrix, Generalized problem
  287.  
  288.      HHHHPPPP     Hermitian Packed (possibly indefinite) (complex only)
  289.  
  290.      HHHHSSSS     upper HeSsenberg
  291.  
  292.      OOOOPPPP     Orthogonal Packed (real only)
  293.  
  294.      OOOORRRR     ORthogonal (real only)
  295.  
  296.      PPPPBBBB     Positive definite Band (symmetric or Hermitian)
  297.  
  298.      PPPPOOOO     POsitive definite (symmetric or Hermitian)
  299.  
  300.      PPPPPPPP     Positive definite Packed (symmetric or Hermitian)
  301.  
  302.      PPPPTTTT     Positive definite Tridiagonal (symmetric or Hermitian)
  303.  
  304.      SSSSBBBB     Symmetric Band (real only)
  305.  
  306.      SSSSPPPP     Symmetric Packed (possibly indefinite)
  307.  
  308.      SSSSTTTT     Symmetric Tridiagonal
  309.  
  310.      SSSSYYYY     SYmmetric (possibly indefinite)
  311.  
  312.      TTTTBBBB     Triangular Band
  313.  
  314.      TTTTGGGG     Triangular matrices, Generalized problem
  315.  
  316.      TTTTPPPP     Triangular Packed
  317.  
  318.      TTTTRRRR     TRiangular
  319.  
  320.      TTTTZZZZ     TrapeZoidal
  321.  
  322.  
  323.  
  324.  
  325.  
  326.  
  327.                                                                         PPPPaaaaggggeeee 5555
  328.  
  329.  
  330.  
  331.  
  332.  
  333.  
  334. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  335.  
  336.  
  337.  
  338.      UUUUNNNN     UNitary (complex only)
  339.  
  340.      UUUUPPPP     Unitary Packed (complex only)
  341.  
  342.      The last two or three letters, _Z_Z or _Z_Z_Z, indicate the computation
  343.      performed.  For example, SSSSGGGGEEEETTTTRRRRFFFF performs a TTTTRRRRiangular FFFFactorization of a
  344.      SSSSingle-precision (real) GGGGEEEEneral matrix; CCCCGGGGEEEETTTTRRRRFFFF performs the factorization
  345.      of a CCCComplex GGGGEEEEneral matrix.
  346.  
  347.    LLLLiiiissssttttssss ooooffff AAAAvvvvaaaaiiiillllaaaabbbblllleeee LLLLAAAAPPPPAAAACCCCKKKK RRRRoooouuuuttttiiiinnnneeeessss
  348.      The following pages contain lists of driver and computational routines
  349.      from LAPACK available in the SCSL Scientific Library.  For details about
  350.      the argument lists and usage of these routines, see the individual online
  351.      man pages or the _L_A_P_A_C_K _U_s_e_r'_s _G_u_i_d_e.
  352.  
  353.      These routines are listed in alphabetical order.
  354.  
  355.      *   CCCCHHHHEEEESSSSVVVV, ZZZZHHHHEEEESSSSVVVV: Solves a complex Hermitian indefinite system of linear
  356.          equations _A_X = _B.
  357.  
  358.      *   CCCCHHHHEEEESSSSVVVVXXXX, ZZZZHHHHEEEESSSSVVVVXXXX:  Solves a complex Hermitian indefinite system of
  359.          linear equations _A_X = _B and provides an estimate of the condition
  360.          number and error bounds on the solution.
  361.  
  362.      *   CCCCHHHHPPPPSSSSVVVV, ZZZZHHHHPPPPSSSSVVVV:  Solves a complex Hermitian indefinite system of linear
  363.          equations _A_X = _B; _A is held in packed storage.
  364.  
  365.      *   CCCCHHHHPPPPSSSSVVVVXXXX, ZZZZHHHHPPPPSSSSVVVVXXXX:  Solves a complex Hermitian indefinite system of
  366.          linear equations _A_X = _B (_A is held in packed storage) and provides an
  367.          estimate of the condition number and error bounds on the solution.
  368.  
  369.      *   SSSSGGGGBBBBSSSSVVVV, DDDDGGGGBBBBSSSSVVVV, CCCCGGGGBBBBSSSSVVVV, ZZZZGGGGBBBBSSSSVVVV:  Solves a general banded system of linear
  370.          equations _A_X = _B.
  371.  
  372.      *   SSSSGGGGBBBBSSSSVVVVXXXX, DDDDGGGGBBBBSSSSVVVVXXXX, CCCCGGGGBBBBSSSSVVVVXXXX, ZZZZGGGGBBBBSSSSVVVVXXXX:  Solves any of the following general
  373.          banded systems of linear equations and provides an estimate of the
  374.          condition number and error bounds on the solution.
  375.  
  376.               A X = B
  377.  
  378.                T
  379.               A = B
  380.  
  381.                H
  382.               A X = B
  383.  
  384.  
  385.      *   SSSSGGGGEEEEEEEESSSS, DDDDGGGGEEEEEEEESSSS, CCCCGGGGEEEEEEEESSSS, ZZZZGGGGEEEEEEEESSSS: Computes eigenvalues, Schur form, and
  386.          Schur vectors of a general matrix.
  387.  
  388.  
  389.  
  390.  
  391.  
  392.  
  393.                                                                         PPPPaaaaggggeeee 6666
  394.  
  395.  
  396.  
  397.  
  398.  
  399.  
  400. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  401.  
  402.  
  403.  
  404.      *   SSSSGGGGEEEEEEEESSSSXXXX, DDDDGGGGEEEEEEEESSSSXXXX, CCCCGGGGEEEEEEEESSSSXXXX, ZZZZGGGGEEEEEEEESSSSXXXX:  Computes eigenvalues, Schur form,
  405.          Schur vectors, and condition numbers of a general matrix.
  406.  
  407.      *   SSSSGGGGEEEEEEEEVVVV, DDDDGGGGEEEEEEEEVVVV, CCCCGGGGEEEEEEEEVVVV, ZZZZGGGGEEEEEEEEVVVV:  Computes eigenvalues and eigenvectors of
  408.          a general matrix.
  409.  
  410.      *   SSSSGGGGEEEEEEEEVVVVXXXX, DDDDGGGGEEEEEEEEVVVVXXXX, CCCCGGGGEEEEEEEEVVVVXXXX, ZZZZGGGGEEEEEEEEVVVVXXXX:  Compute eigenvalues, eigenvectors,
  411.          and condition numbers of a general matrix.
  412.  
  413.      *   SSSSGGGGEEEEGGGGSSSS, DDDDGGGGEEEEGGGGSSSS, CCCCGGGGEEEEGGGGSSSS, ZZZZGGGGEEEEGGGGSSSS:  Computes the generalized Schur
  414.          factorization of a matrix pair (A,B).
  415.  
  416.      *   SSSSGGGGEEEEGGGGVVVV, DDDDGGGGEEEEGGGGVVVV, CCCCGGGGEEEEGGGGVVVV, ZZZZGGGGEEEEGGGGVVVV:  Computes the eigenvalues and
  417.          eigenvectors of a matrix pair (A,B).
  418.  
  419.      *   SSSSGGGGEEEELLLLSSSS, DDDDGGGGEEEELLLLSSSS, CCCCGGGGEEEELLLLSSSS, ZZZZGGGGEEEELLLLSSSS:  Finds a least squares or minimum norm
  420.          solution of an overdetermined or underdetermined linear.  system.
  421.  
  422.      *   SSSSGGGGEEEELLLLSSSSDDDD, DDDDGGGGEEEELLLLSSSSDDDD, CCCCGGGGEEEELLLLSSSSDDDD, ZZZZGGGGEEEELLLLSSSSDDDD: Solves linear least squares problem
  423.          using divide-and-conquer.
  424.  
  425.      *   SSSSGGGGEEEELLLLSSSSSSSS, DDDDGGGGEEEELLLLSSSSSSSS, CCCCGGGGEEEELLLLSSSSSSSS, ZZZZGGGGEEEELLLLSSSSSSSS:  Solves linear least squares problem
  426.          using SVD.
  427.  
  428.      *   SSSSGGGGEEEELLLLSSSSYYYY, DDDDGGGGEEEELLLLSSSSYYYY, CCCCGGGGEEEELLLLSSSSYYYY, ZZZZGGGGEEEELLLLSSSSYYYY:  Computes a minimum norm solution of
  429.          a linear least squares problem using a complete orthogonal
  430.          factorization.
  431.  
  432.      *   SSSSGGGGEEEESSSSDDDDDDDD, DDDDGGGGEEEESSSSDDDDDDDD, CCCCGGGGEEEESSSSDDDDDDDD, ZZZZGGGGEEEESSSSDDDDDDDD: Computes the singular value
  433.          decomposition (SVD) of a general matrix using divide-and-conquer.
  434.  
  435.      *   SSSSGGGGEEEESSSSVVVV, DDDDGGGGEEEESSSSVVVV, CCCCGGGGEEEESSSSVVVV, ZZZZGGGGEEEESSSSVVVV:  Solves a general system of linear
  436.          equations _A_X = _B.
  437.  
  438.      *   SSSSGGGGEEEESSSSVVVVDDDD, DDDDGGGGEEEESSSSVVVVDDDD, CCCCGGGGEEEESSSSVVVVDDDD, ZZZZGGGGEEEESSSSVVVVDDDD:  Computes the singular value
  439.          decomposition (SVD) of a general matrix.
  440.  
  441.      *   SSSSGGGGEEEESSSSVVVVXXXX, DDDDGGGGEEEESSSSVVVVXXXX, CCCCGGGGEEEESSSSVVVVXXXX, ZZZZGGGGEEEESSSSVVVVXXXX:  Solves any of the following general
  442.          systems of linear equations and provides an estimate of the condition
  443.          number and error bounds on the solution.
  444.  
  445.               A X = B
  446.  
  447.                T
  448.               A X = B
  449.  
  450.                H
  451.               A X = B
  452.  
  453.  
  454.  
  455.  
  456.  
  457.  
  458.  
  459.                                                                         PPPPaaaaggggeeee 7777
  460.  
  461.  
  462.  
  463.  
  464.  
  465.  
  466. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  467.  
  468.  
  469.  
  470.      *   SSSSGGGGGGGGEEEESSSS, DDDDGGGGGGGGEEEESSSS, CCCCGGGGGGGGEEEESSSS, ZZZZGGGGGGGGEEEESSSS: Computes the generalized Schur
  471.          factorization of a matrix pair (A,B).
  472.  
  473.      *   SSSSGGGGGGGGEEEESSSSXXXX, DDDDGGGGGGGGEEEESSSSXXXX, CCCCGGGGGGGGEEEESSSSXXXX, ZZZZGGGGGGGGEEEESSSSXXXX: Computes the generalized Schur
  474.          factorization of a matrix pair (A,B), expert driver.
  475.  
  476.      *   SSSSGGGGGGGGEEEEVVVV, DDDDGGGGGGGGEEEEVVVV, CCCCGGGGGGGGEEEEVVVV, ZZZZGGGGGGGGEEEEVVVV: Computes the eigenvalues and eigenvectors
  477.          of a matrix pair (A,B).
  478.  
  479.      *   SSSSGGGGGGGGEEEEVVVVXXXX, DDDDGGGGGGGGEEEEVVVVXXXX, CCCCGGGGGGGGEEEEVVVVXXXX, ZZZZGGGGGGGGEEEEVVVVXXXX: Computes the eigenvalues and
  480.          eigenvectors of a matrix pair (A,B), expert driver.
  481.  
  482.      *   SSSSGGGGGGGGLLLLSSSSEEEE, DDDDGGGGGGGGLLLLSSSSEEEE, CCCCGGGGGGGGLLLLSSSSEEEE, ZZZZGGGGGGGGLLLLSSSSEEEE: Solves a linear equality-constrained
  483.          least squares problem (LSE) using GRQ.
  484.  
  485.      *   SSSSGGGGGGGGGGGGLLLLMMMM, DDDDGGGGGGGGGGGGLLLLMMMM, CCCCGGGGGGGGGGGGLLLLMMMM, ZZZZGGGGGGGGGGGGLLLLMMMM: Solves a general (Gauss-Markov)
  486.          linear model problem (GLM) using GQR.
  487.  
  488.      *   SSSSGGGGGGGGSSSSVVVVDDDD, DDDDGGGGGGGGSSSSVVVVDDDD, CCCCGGGGGGGGSSSSVVVVDDDD, ZZZZGGGGGGGGSSSSVVVVDDDD: Computes the generalized singular
  489.          value decomposition (SVD) of a matrix pair (A,B).
  490.  
  491.      *   SSSSGGGGTTTTSSSSVVVV, DDDDGGGGTTTTSSSSVVVV, CCCCGGGGTTTTSSSSVVVV, ZZZZGGGGTTTTSSSSVVVV:  Solves a general tridiagonal system of
  492.          linear equations _A_X = _B.
  493.  
  494.      *   SSSSGGGGTTTTSSSSVVVVXXXX, DDDDGGGGTTTTSSSSVVVVXXXX, CCCCGGGGTTTTSSSSVVVVXXXX, ZZZZGGGGTTTTSSSSVVVVXXXX:  Solves any of the following general
  495.          tridiagonal systems of linear equations and provides an estimate of
  496.          the condition number and error bounds on the solution.
  497.  
  498.               A X = B
  499.  
  500.                T
  501.               A = B
  502.  
  503.                H
  504.               A X = B
  505.  
  506.  
  507.      *   SSSSPPPPBBBBSSSSVVVV, DDDDPPPPBBBBSSSSVVVV, CCCCPPPPBBBBSSSSVVVV, ZZZZPPPPBBBBSSSSVVVV:  Solves a symmetric or Hermitian positive
  508.          definite banded system of linear equations _A_X = _B.
  509.  
  510.      *   SSSSPPPPBBBBSSSSVVVVXXXX, DDDDPPPPBBBBSSSSVVVVXXXX, CCCCPPPPBBBBSSSSVVVVXXXX, ZZZZPPPPBBBBSSSSVVVVXXXX:  Solves a symmetric or Hermitian
  511.          positive definite banded system of linear equations _A_X = _B and
  512.          provides an estimate of the condition number and error bounds on the
  513.          solution.
  514.  
  515.      *   SSSSPPPPOOOOSSSSVVVV, DDDDPPPPOOOOSSSSVVVV, CCCCPPPPOOOOSSSSVVVV, ZZZZPPPPOOOOSSSSVVVV:  Solves a symmetric or Hermitian positive
  516.          definite system of linear equations _A_X = _B.
  517.  
  518.      *   SSSSPPPPOOOOSSSSVVVVXXXX, DDDDPPPPOOOOSSSSVVVVXXXX, CCCCPPPPOOOOSSSSVVVVXXXX, ZZZZPPPPOOOOSSSSVVVVXXXX:  Solves a symmetric or Hermitian
  519.          positive definite system of linear equations _A_X = _B and provides an
  520.          estimate of the condition number and error bounds on the solution.
  521.  
  522.  
  523.  
  524.  
  525.                                                                         PPPPaaaaggggeeee 8888
  526.  
  527.  
  528.  
  529.  
  530.  
  531.  
  532. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  533.  
  534.  
  535.  
  536.      *   SSSSPPPPPPPPSSSSVVVV, DDDDPPPPPPPPSSSSVVVV, CCCCPPPPPPPPSSSSVVVV, ZZZZPPPPPPPPSSSSVVVV:  Solves a symmetric or Hermitian positive
  537.          definite system of linear equations _A_X = _B; _A is held in packed
  538.          storage.
  539.  
  540.      *   SSSSPPPPPPPPSSSSVVVVXXXX, DDDDPPPPPPPPSSSSVVVVXXXX, CCCCPPPPPPPPSSSSVVVVXXXX, ZZZZPPPPPPPPSSSSVVVVXXXX:  Solves a symmetric or Hermitian
  541.          positive definite system of linear equations _A_X = _B (_A is held in
  542.          packed storage) and provides an estimate of the condition number and
  543.          error bounds on the solution.
  544.  
  545.      *   SSSSPPPPTTTTSSSSVVVV, DDDDPPPPTTTTSSSSVVVV, CCCCPPPPTTTTSSSSVVVV, ZZZZPPPPTTTTSSSSVVVV:  Solves a symmetric or Hermitian positive
  546.          definite tridiagonal system of linear equations _A_X = _B.
  547.  
  548.      *   SSSSPPPPTTTTSSSSVVVVXXXX, DDDDPPPPTTTTSSSSVVVVXXXX, CCCCPPPPTTTTSSSSVVVVXXXX, ZZZZPPPPTTTTSSSSVVVVXXXX:  Solves a symmetric or Hermitian
  549.          positive definite tridiagonal system of linear equations _A_X = _B and
  550.          provides an estimate of the condition number and error bounds on the
  551.          solution.
  552.  
  553.      *   SSSSSSSSBBBBEEEEVVVV, DDDDSSSSBBBBEEEEVVVV, CCCCHHHHBBBBEEEEVVVV, ZZZZHHHHBBBBEEEEVVVV:  Compute all eigenvalues and eigenvectors
  554.          of a symmetric or Hermitian band matrix.
  555.  
  556.      *   SSSSSSSSBBBBEEEEVVVVDDDD, DDDDSSSSBBBBEEEEVVVVDDDD, CCCCHHHHBBBBEEEEVVVVDDDD, ZZZZHHHHBBBBEEEEVVVVDDDD: Compute all eigenvalues and
  557.          eigenvectors of a symmetric or Hermitian band matrix using divide-
  558.          and-conquer.
  559.  
  560.      *   SSSSSSSSBBBBEEEEVVVVXXXX, DDDDSSSSBBBBEEEEVVVVXXXX, CCCCHHHHBBBBEEEEVVVVXXXX, ZZZZHHHHBBBBEEEEVVVVXXXX:  Compute selected eigenvalues and
  561.          eigenvectors of a symmetric or Hermitian band matrix.
  562.  
  563.      *   SSSSSSSSBBBBGGGGVVVV, DDDDSSSSBBBBGGGGVVVV, CCCCHHHHBBBBGGGGVVVV, ZZZZHHHHBBBBGGGGVVVV:  Computes all eigenvalues and
  564.          eigenvectors of a generalized symmetric-definite or Hermitian-
  565.          definite banded eigenproblem.
  566.  
  567.      *   SSSSSSSSBBBBGGGGVVVVDDDD, DDDDSSSSBBBBGGGGVVVVDDDD, CCCCHHHHBBBBGGGGVVVVDDDD, ZZZZHHHHBBBBGGGGVVVVDDDD: Computes all eigenvalues and
  568.          eigenvectors of a generalized symmetric-definite or Hermitian-
  569.          definite banded eigenproblem using divide-and-conquer.
  570.  
  571.      *   SSSSSSSSBBBBGGGGVVVVXXXX, DDDDSSSSBBBBGGGGVVVVXXXX, CCCCHHHHBBBBGGGGVVVVXXXX, ZZZZHHHHBBBBGGGGVVVVXXXX: Computes all eigenvalues and
  572.          eigenvectors of a generalized symmetric-definite or Hermitian-
  573.          definite banded eigenproblem expert driver.
  574.  
  575.      *   SSSSSSSSPPPPEEEEVVVV, DDDDSSSSPPPPEEEEVVVV, CCCCHHHHPPPPEEEEVVVV, ZZZZHHHHPPPPEEEEVVVV:  Computes all eigenvalues and
  576.          eigenvectors of a symmetric or Hermitian packed matrix.
  577.  
  578.      *   SSSSSSSSPPPPEEEEVVVVDDDD, DDDDSSSSPPPPEEEEVVVVDDDD, CCCCHHHHPPPPEEEEVVVVDDDD, ZZZZHHHHPPPPEEEEVVVVDDDD: Computes all eigenvalues and
  579.          eigenvectors of a symmetric or Hermitian packed matrix using divide-
  580.          and-conquer.
  581.  
  582.      *   SSSSSSSSPPPPEEEEVVVVXXXX, DDDDSSSSPPPPEEEEVVVVXXXX, CCCCHHHHPPPPEEEEVVVVXXXX, ZZZZHHHHPPPPEEEEVVVVXXXX:  Computes selected eigenvalues and
  583.          eigenvectors of a symmetric or Hermitian packed matrix.
  584.  
  585.      *   SSSSSSSSPPPPGGGGVVVV, DDDDSSSSPPPPGGGGVVVV, CCCCHHHHPPPPGGGGVVVV, ZZZZHHHHPPPPGGGGVVVV:  Computes all eigenvalues and
  586.          eigenvectors of a generalized symmetric-definite or
  587.          Hermitian-definite packed eigenproblem.
  588.  
  589.  
  590.  
  591.                                                                         PPPPaaaaggggeeee 9999
  592.  
  593.  
  594.  
  595.  
  596.  
  597.  
  598. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  599.  
  600.  
  601.  
  602.      *   SSSSSSSSPPPPSSSSVVVV, DDDDSSSSPPPPSSSSVVVV, CCCCSSSSPPPPSSSSVVVV, ZZZZSSSSPPPPSSSSVVVV:  Solves a real or complex symmetric
  603.          indefinite system of linear equations _A_X = _B; _A is held in packed
  604.          storage.
  605.  
  606.      *   SSSSSSSSPPPPSSSSVVVVXXXX, DDDDSSSSPPPPSSSSVVVVXXXX, CCCCSSSSPPPPSSSSVVVVXXXX, ZZZZSSSSPPPPSSSSVVVVXXXX:  Solves a real or complex symmetric
  607.          indefinite system of linear equations _A_X = _B (_A is held in packed
  608.          storage) and provides an estimate of the condition number and error
  609.          bounds on the solution.
  610.  
  611.      *   SSSSSSSSTTTTEEEEVVVV, DDDDSSSSTTTTEEEEVVVV:  Compute all eigenvalues and eigenvectors of a real
  612.          symmetric tridiagonal matrix.
  613.  
  614.      *   SSSSSSSSTTTTEEEEVVVVDDDD, DDDDSSSSTTTTEEEEVVVVDDDD:  Compute all eigenvalues and eigenvectors of a real
  615.          symmetric tridiagonal matrix using divide-and-conquer.
  616.  
  617.      *   SSSSSSSSTTTTEEEEVVVVRRRR, DDDDSSSSTTTTEEEEVVVVRRRR:  Compute all eigenvalues and eigenvectors of a real
  618.          symmetric tridiagonal matrix using RRR (relatively robust
  619.          representation).
  620.  
  621.      *   SSSSSSSSTTTTEEEEVVVVXXXX, DDDDSSSSTTTTEEEEVVVVXXXX:  Computes selected eigenvalues and eigenvectors of a
  622.          real symmetric tridiagonal matrix.
  623.  
  624.      *   SSSSSSSSYYYYEEEEVVVV, DDDDSSSSYYYYEEEEVVVV, CCCCHHHHEEEEEEEEVVVV, ZZZZHHHHEEEEEEEEVVVV:  Computes all eigenvalues and
  625.          eigenvectors of a symmetric or Hermitian matrix.
  626.  
  627.      *   SSSSSSSSYYYYEEEEVVVVDDDD, DDDDSSSSYYYYEEEEVVVVDDDD, CCCCHHHHEEEEEEEEVVVVDDDD, ZZZZHHHHEEEEEEEEVVVVDDDD: Computes all eigenvalues and
  628.          eigenvectors of a symmetric or Hermitian matrix using divide-and-
  629.          conquer.
  630.  
  631.      *   SSSSSSSSYYYYEEEEVVVVRRRR, DDDDSSSSYYYYEEEEVVVVRRRR, CCCCHHHHEEEEEEEEVVVVRRRR, ZZZZHHHHEEEEEEEEVVVVRRRR: Computes all eigenvalues and
  632.          eigenvectors of a symmetric or Hermitian matrix using RRR (relatively
  633.          robust representation).
  634.  
  635.      *   SSSSSSSSYYYYEEEEVVVVXXXX, DDDDSSSSYYYYEEEEVVVVXXXX, CCCCHHHHEEEEEEEEVVVVXXXX, ZZZZHHHHEEEEEEEEVVVVXXXX:  Computes selected eigenvalues and
  636.          eigenvectors of a symmetric or Hermitian matrix.
  637.  
  638.      *   SSSSSSSSYYYYGGGGVVVV, DDDDSSSSYYYYGGGGVVVV, CCCCHHHHEEEEGGGGVVVV, ZZZZHHHHEEEEGGGGVVVV:  Computes all eigenvalues and
  639.          eigenvectors of a generalized symmetric-definite or
  640.          Hermitian-definite eigenproblem.
  641.  
  642.      *   SSSSSSSSYYYYGGGGVVVVDDDD, DDDDSSSSYYYYGGGGVVVVDDDD, CCCCHHHHEEEEGGGGVVVVDDDD, ZZZZHHHHEEEEGGGGVVVVDDDD: Computes all eigenvalues and
  643.          eigenvectors of a generalized symmetric-definite or Hermitian-
  644.          definite eigenproblem using divide-and-conquer.
  645.  
  646.      *   SSSSSSSSYYYYGGGGVVVVXXXX, DDDDSSSSYYYYGGGGVVVVXXXX, CCCCHHHHEEEEGGGGVVVVXXXX, ZZZZHHHHEEEEGGGGVVVVXXXX: Computes all eigenvalues and
  647.          eigenvectors of a generalized symmetric-definite or Hermitian-
  648.          definite eigenproblem expert driver.
  649.  
  650.      *   SSSSSSSSYYYYSSSSVVVV, DDDDSSSSYYYYSSSSVVVV, CCCCSSSSYYYYSSSSVVVV, ZZZZSSSSYYYYSSSSVVVV:  Solves a real or complex symmetric
  651.          indefinite system of linear equations _A_X = _B.
  652.  
  653.  
  654.  
  655.  
  656.  
  657.                                                                        PPPPaaaaggggeeee 11110000
  658.  
  659.  
  660.  
  661.  
  662.  
  663.  
  664. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  665.  
  666.  
  667.  
  668.      *   SSSSSSSSYYYYSSSSVVVVXXXX, DDDDSSSSYYYYSSSSVVVVXXXX, CCCCSSSSYYYYSSSSVVVVXXXX, ZZZZSSSSYYYYSSSSVVVVXXXX:  Solves a real or complex symmetric
  669.          indefinite system of linear equations _A_X = _B and provides an estimate
  670.          of the condition number and error bounds on the solution.
  671.  
  672.      These computational routines are listed in alphabetical order, with real
  673.      matrix routines and complex matrix routines grouped together as
  674.      appropriate.
  675.  
  676.      *   CCCCHHHHEEEECCCCOOOONNNN, ZZZZHHHHEEEECCCCOOOONNNN:  Estimates the reciprocal of the condition number of
  677.          a complex Hermitian indefinite matrix, using the factorization
  678.          computed by CCCCHHHHEEEETTTTRRRRFFFF.
  679.  
  680.      *   CCCCHHHHEEEERRRRFFFFSSSS, ZZZZHHHHEEEERRRRFFFFSSSS:  Improves the computed solution to a complex
  681.          Hermitian indefinite system of linear equations _A_X = _B and provides
  682.          error bounds for the solution.
  683.  
  684.      *   CCCCHHHHEEEETTTTRRRRFFFF, ZZZZHHHHEEEETTTTRRRRFFFF:  Computes the factorization of a complex Hermitian
  685.          indefinite matrix, using the diagonal pivoting method.
  686.  
  687.      *   CCCCHHHHEEEETTTTRRRRIIII, ZZZZHHHHEEEETTTTRRRRIIII:  Computes the inverse of a complex Hermitian
  688.          indefinite matrix, using the factorization computed by CCCCHHHHEEEETTTTRRRRFFFF.
  689.  
  690.      *   CCCCHHHHEEEETTTTRRRRSSSS, ZZZZHHHHEEEETTTTRRRRSSSS:  Solves a complex Hermitian indefinite system of
  691.          linear equations _A_X = _B, using the factorization computed by CCCCHHHHEEEETTTTRRRRFFFF.
  692.  
  693.      *   CCCCHHHHPPPPCCCCOOOONNNN, ZZZZHHHHPPPPCCCCOOOONNNN:  Estimates the reciprocal of the condition number of
  694.          a complex Hermitian indefinite matrix in packed storage, using the
  695.          factorization computed by CCCCHHHHPPPPTTTTRRRRFFFF.
  696.  
  697.      *   CCCCHHHHPPPPRRRRFFFFSSSS, ZZZZHHHHPPPPRRRRFFFFSSSS:  Improves the computed solution to a complex
  698.          Hermitian indefinite system of linear equations _A_X = _B (_A is held in
  699.          packed storage) and provides error bounds for the solution.
  700.  
  701.      *   CCCCHHHHPPPPTTTTRRRRFFFF, ZZZZHHHHPPPPTTTTRRRRFFFF:  Computes the factorization of a complex Hermitian
  702.          indefinite matrix in packed storage, using the diagonal pivoting
  703.          method.
  704.  
  705.      *   CCCCHHHHPPPPTTTTRRRRIIII, ZZZZHHHHPPPPTTTTRRRRIIII:  Computes the inverse of a complex Hermitian
  706.          indefinite matrix in packed storage, using the factorization computed
  707.          by CCCCHHHHPPPPTTTTRRRRFFFF.
  708.  
  709.      *   CCCCHHHHPPPPTTTTRRRRSSSS, ZZZZHHHHPPPPTTTTRRRRSSSS:  Solves a complex Hermitian indefinite system of
  710.          linear equations _A_X = _B (_A is held in packed storage) using the
  711.          factorization computed by CCCCHHHHPPPPTTTTRRRRFFFF.
  712.  
  713.      *   IIIILLLLAAAAEEEENNNNVVVV:  Determines tuning parameters (such as the block size).
  714.  
  715.      *   SSSSBBBBDDDDSSSSDDDDCCCC, DDDDBBBBDDDDSSSSDDDDCCCC, CCCCBBBBDDDDSSSSDDDDCCCC, ZZZZBBBBDDDDSSSSDDDDCCCC: Compute the singular value
  716.          decomposition of a general matrix reduced to bidiagonal form using
  717.          divide-and-conquer.
  718.  
  719.  
  720.  
  721.  
  722.  
  723.                                                                        PPPPaaaaggggeeee 11111111
  724.  
  725.  
  726.  
  727.  
  728.  
  729.  
  730. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  731.  
  732.  
  733.  
  734.      *   SSSSBBBBDDDDSSSSQQQQRRRR, DDDDBBBBDDDDSSSSQQQQRRRR, CCCCBBBBDDDDSSSSQQQQRRRR, ZZZZBBBBDDDDSSSSQQQQRRRR:  Compute the singular value
  735.          decomposition of a general matrix reduced to bidiagonal form
  736.  
  737.      *   SSSSDDDDIIIISSSSNNNNAAAA, DDDDDDDDIIIISSSSNNNNAAAA, CCCCDDDDIIIISSSSNNNNAAAA, ZZZZDDDDIIIISSSSNNNNAAAA: Computes the reciprocal condition
  738.          numbers for the eigenvectors of a real symmetric or complex Hermitian
  739.          matrix or for the left or right singular vectors of a general matrix.
  740.  
  741.      *   SSSSGGGGBBBBBBBBRRRRDDDD, DDDDGGGGBBBBBBBBRRRRDDDD, CCCCGGGGBBBBBBBBRRRRDDDD, ZZZZGGGGBBBBBBBBRRRRDDDD: Reduces a general band matrix to real
  742.          upper bidiagonal form by an orthogonal/unitary transformation.
  743.  
  744.      *   SSSSGGGGBBBBCCCCOOOONNNN, DDDDGGGGBBBBCCCCOOOONNNN, CCCCGGGGBBBBCCCCOOOONNNN, ZZZZGGGGBBBBCCCCOOOONNNN:  Estimates the reciprocal of the
  745.          condition number of a general band matrix, in either the 1-norm or
  746.          the infinity-norm, using the _L_U factorization computed by SSSSGGGGBBBBTTTTRRRRFFFF or
  747.          CCCCGGGGBBBBTTTTRRRRFFFF.
  748.  
  749.      *   SSSSGGGGBBBBEEEEQQQQUUUU, DDDDGGGGBBBBEEEEQQQQUUUU, CCCCGGGGBBBBEEEEQQQQUUUU, ZZZZGGGGBBBBEEEEQQQQUUUU:  Computes row and column scalings to
  750.          equilibrate a general band matrix and reduce its condition number.
  751.          Does not multiprocess or call any multiprocessing routines.
  752.  
  753.      *   SSSSGGGGBBBBRRRRFFFFSSSS, DDDDGGGGBBBBRRRRFFFFSSSS, CCCCGGGGBBBBRRRRFFFFSSSS, ZZZZGGGGBBBBRRRRFFFFSSSS:  Improves the computed solution to
  754.          any of the following general banded systems of linear equations and
  755.          provides error bounds for the solution.
  756.  
  757.               A X = B
  758.  
  759.                T
  760.               A X = B
  761.  
  762.                H
  763.               A X = B
  764.  
  765.  
  766.      *   SSSSGGGGBBBBTTTTRRRRFFFF, DDDDGGGGBBBBTTTTRRRRFFFF, CCCCGGGGBBBBTTTTRRRRFFFF, ZZZZGGGGBBBBTTTTRRRRFFFF:  Computes an _L_U factorization of a
  767.          general band matrix, using partial pivoting with row interchanges.
  768.  
  769.      *   SSSSGGGGBBBBTTTTRRRRSSSS, DDDDGGGGBBBBTTTTRRRRSSSS, CCCCGGGGBBBBTTTTRRRRSSSS, ZZZZGGGGBBBBTTTTRRRRSSSS:  Solves any of the following general
  770.          banded systems of linear equations using the _L_U factorization
  771.          computed by SSSSGGGGBBBBTTTTRRRRFFFF or CCCCGGGGBBBBTTTTRRRRFFFF.
  772.  
  773.               A X = B
  774.  
  775.                T
  776.               A X = B
  777.  
  778.                H
  779.               A X = B
  780.  
  781.  
  782.      *   SSSSGGGGEEEEBBBBAAAAKKKK, DDDDGGGGEEEEBBBBAAAAKKKK, CCCCGGGGEEEEBBBBAAAAKKKK, ZZZZGGGGEEEEBBBBAAAAKKKK:  Back transform the eigenvectors of a
  783.          matrix transformed by SSSSGGGGEEEEBBBBAAAALLLL/CCCCGGGGEEEEBBBBAAAALLLL.
  784.  
  785.  
  786.  
  787.  
  788.  
  789.                                                                        PPPPaaaaggggeeee 11112222
  790.  
  791.  
  792.  
  793.  
  794.  
  795.  
  796. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  797.  
  798.  
  799.  
  800.      *   SSSSGGGGEEEEBBBBAAAALLLL, DDDDGGGGEEEEBBBBAAAALLLL, CCCCGGGGEEEEBBBBAAAALLLL, ZZZZGGGGEEEEBBBBAAAALLLL:  Balances a general matrix _A.
  801.  
  802.      *   SSSSGGGGEEEEBBBBRRRRDDDD, DDDDGGGGEEEEBBBBRRRRDDDD, CCCCGGGGEEEEBBBBRRRRDDDD, ZZZZGGGGEEEEBBBBRRRRDDDD:  Reduces a general matrix to upper or
  803.          lower bidiagonal form by an orthogonal/unitary transformation.
  804.  
  805.      *   SSSSGGGGEEEECCCCOOOONNNN, DDDDGGGGEEEECCCCOOOONNNN, CCCCGGGGEEEECCCCOOOONNNN, ZZZZGGGGEEEECCCCOOOONNNN:  Estimates the reciprocal of the
  806.          condition number of a general matrix, in either the 1-norm or the
  807.          infinity-norm, using the _L_U factorization computed by SSSSGGGGEEEETTTTRRRRFFFF or
  808.          CCCCGGGGEEEETTTTRRRRFFFF.
  809.  
  810.      *   SSSSGGGGEEEEEEEEQQQQUUUU, DDDDGGGGEEEEEEEEQQQQUUUU, CCCCGGGGEEEEEEEEQQQQUUUU, ZZZZGGGGEEEEEEEEQQQQUUUU:  Computes row and column scalings to
  811.          equilibrate a general rectangular matrix and to reduce its condition
  812.          number.
  813.  
  814.      *   SSSSGGGGEEEEHHHHRRRRDDDD, DDDDGGGGEEEEHHHHRRRRDDDD, CCCCGGGGEEEEHHHHRRRRDDDD, ZZZZGGGGEEEEHHHHRRRRDDDD:  Reduces a general matrix to upper
  815.          Hessenberg form by an orthogonal/unitary transformation.
  816.  
  817.      *   SSSSGGGGEEEELLLLQQQQFFFF, DDDDGGGGEEEELLLLQQQQFFFF, CCCCGGGGEEEELLLLQQQQFFFF, ZZZZGGGGEEEELLLLQQQQFFFF:  Computes an _L_Q factorization of a
  818.          general rectangular matrix.
  819.  
  820.      *   SSSSGGGGEEEEQQQQLLLLFFFF, DDDDGGGGEEEEQQQQLLLLFFFF, CCCCGGGGEEEEQQQQLLLLFFFF, ZZZZGGGGEEEEQQQQLLLLFFFF:  Computes a _Q_L factorization of a
  821.          general rectangular matrix.
  822.  
  823.      *   SSSSGGGGEEEEQQQQPPPP3333, DDDDGGGGEEEEQQQQPPPP3333, CCCCGGGGEEEEQQQQPPPP3333, ZZZZGGGGEEEEQQQQPPPP3333: Computes a QR factorization with
  824.          column pivoting of a general rectangular matrix using level-3 BLAS.
  825.  
  826.      *   SSSSGGGGEEEEQQQQPPPPFFFF, DDDDGGGGEEEEQQQQPPPPFFFF, CCCCGGGGEEEEQQQQPPPPFFFF, ZZZZGGGGEEEEQQQQPPPPFFFF:  Computes a QQQQRRRR factorization with
  827.          column pivoting of a general rectangular matrix.
  828.  
  829.      *   SSSSGGGGEEEEQQQQRRRRFFFF, DDDDGGGGEEEEQQQQRRRRFFFF, CCCCGGGGEEEEQQQQRRRRFFFF, ZZZZGGGGEEEEQQQQRRRRFFFF:  Computes a _Q_R factorization of a
  830.          general rectangular matrix.
  831.  
  832.      *   SSSSGGGGEEEERRRRFFFFSSSS, DDDDGGGGEEEERRRRFFFFSSSS, CCCCGGGGEEEERRRRFFFFSSSS, ZZZZGGGGEEEERRRRFFFFSSSS:  Improves the computed solution to
  833.          any of the following general systems of linear equations and provides
  834.          error bounds for the solution.
  835.  
  836.               A X = B
  837.  
  838.                T
  839.               A X = B
  840.  
  841.                H
  842.               A X = B
  843.  
  844.  
  845.      *   SSSSGGGGEEEERRRRQQQQFFFF, DDDDGGGGEEEERRRRQQQQFFFF, CCCCGGGGEEEERRRRQQQQFFFF, ZZZZGGGGEEEERRRRQQQQFFFF:  Computes an _R_Q factorization of a
  846.          general rectangular matrix.
  847.  
  848.      *   SSSSGGGGEEEETTTTRRRRFFFF, DDDDGGGGEEEETTTTRRRRFFFF, CCCCGGGGEEEETTTTRRRRFFFF, ZZZZGGGGEEEETTTTRRRRFFFF:  Computes an _L_U factorization of a
  849.          general matrix, using partial pivoting with row interchanges.
  850.  
  851.  
  852.  
  853.  
  854.  
  855.                                                                        PPPPaaaaggggeeee 11113333
  856.  
  857.  
  858.  
  859.  
  860.  
  861.  
  862. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  863.  
  864.  
  865.  
  866.      *   SSSSGGGGEEEETTTTRRRRIIII, DDDDGGGGEEEETTTTRRRRIIII, CCCCGGGGEEEETTTTRRRRIIII, ZZZZGGGGEEEETTTTRRRRIIII:  Computes the inverse of a general
  867.          matrix, using the _L_U factorization computed by SSSSGGGGEEEETTTTRRRRFFFF or CCCCGGGGEEEETTTTRRRRFFFF.
  868.  
  869.      *   SSSSGGGGEEEETTTTRRRRSSSS, DDDDGGGGEEEETTTTRRRRSSSS, CCCCGGGGEEEETTTTRRRRSSSS, ZZZZGGGGEEEETTTTRRRRSSSS:  Solves any of the following general
  870.          systems of linear equations using the _L_U factorization computed by
  871.          SSSSGGGGEEEETTTTRRRRFFFF or CCCCGGGGEEEETTTTRRRRFFFF.
  872.  
  873.               A X = B
  874.  
  875.                T
  876.               A X = B
  877.  
  878.                H
  879.               A X = B
  880.  
  881.  
  882.      *   SSSSGGGGGGGGBBBBAAAAKKKK, DDDDGGGGGGGGBBBBAAAAKKKK, CCCCGGGGGGGGBBBBAAAAKKKK, ZZZZGGGGGGGGBBBBAAAAKKKK:  Back transform the eigenvectors of a
  883.          generalized eigenvalue problem transformed by SSSSGGGGGGGGBBBBAAAALLLL
  884.  
  885.      *   SSSSGGGGGGGGBBBBAAAALLLL, DDDDGGGGGGGGBBBBAAAALLLL, CCCCGGGGGGGGBBBBAAAALLLL, ZZZZGGGGGGGGBBBBAAAALLLL:  Balance a pair of general matrices
  886.          (A,B)
  887.  
  888.      *   SSSSGGGGGGGGHHHHRRRRDDDD, DDDDGGGGGGGGHHHHRRRRDDDD, CCCCGGGGGGGGHHHHRRRRDDDD, ZZZZGGGGGGGGHHHHRRRRDDDD:  Reduce a pair of matrices (A,B) to
  889.          generalized upper Hessenberg form
  890.  
  891.      *   SSSSGGGGGGGGQQQQRRRRFFFF, DDDDGGGGGGGGQQQQRRRRFFFF, CCCCGGGGGGGGQQQQRRRRFFFF, ZZZZGGGGGGGGQQQQRRRRFFFF: Computes a generalized QR
  892.          factorization of a pair of matrices (A,B).
  893.  
  894.      *   SSSSGGGGGGGGRRRRQQQQFFFF, DDDDGGGGGGGGRRRRQQQQFFFF, CCCCGGGGGGGGRRRRQQQQFFFF, ZZZZGGGGGGGGRRRRQQQQFFFF: Computes a generalized RQ
  895.          factorization of a pair of matrices (A,B).
  896.  
  897.      *   SSSSGGGGGGGGSSSSVVVVPPPP, DDDDGGGGGGGGSSSSVVVVPPPP, CCCCGGGGGGGGSSSSVVVVPPPP, ZZZZGGGGGGGGSSSSVVVVPPPP: Computes orthogonal/unitary matrices
  898.          U, V, and Q as the preprocessing step for computing the generalized
  899.          singular value decomposition (GSVD).
  900.  
  901.      *   SSSSGGGGTTTTCCCCOOOONNNN, DDDDGGGGTTTTCCCCOOOONNNN, CCCCGGGGTTTTCCCCOOOONNNN, ZZZZGGGGTTTTCCCCOOOONNNN:  Estimates the reciprocal of the
  902.          condition number of a general tridiagonal matrix, in either the 1-
  903.          norm or the infinity-norm, using the _L_U factorization computed by
  904.          SSSSGGGGTTTTTTTTRRRRFFFF or CCCCGGGGTTTTTTTTRRRRFFFF.
  905.  
  906.      *   SSSSGGGGTTTTRRRRFFFFSSSS, DDDDGGGGTTTTRRRRFFFFSSSS, CCCCGGGGTTTTRRRRFFFFSSSS, ZZZZGGGGTTTTRRRRFFFFSSSS:  Improves the computed solution to
  907.          any of the following general tridiagonal systems of linear equations
  908.          and provides error bounds for the solution.
  909.  
  910.               A X = B
  911.  
  912.                T
  913.               A X = B
  914.  
  915.                H
  916.               A X = B
  917.  
  918.  
  919.  
  920.  
  921.                                                                        PPPPaaaaggggeeee 11114444
  922.  
  923.  
  924.  
  925.  
  926.  
  927.  
  928. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  929.  
  930.  
  931.  
  932.      *   SSSSGGGGTTTTTTTTRRRRFFFF, DDDDGGGGTTTTTTTTRRRRFFFF, CCCCGGGGTTTTTTTTRRRRFFFF, ZZZZGGGGTTTTTTTTRRRRFFFF:  Computes an _L_U factorization of a
  933.          general tridiagonal matrix, using partial pivoting with row
  934.          interchanges.
  935.  
  936.      *   SSSSGGGGTTTTTTTTRRRRSSSS, DDDDGGGGTTTTTTTTRRRRSSSS, CCCCGGGGTTTTTTTTRRRRSSSS, ZZZZGGGGTTTTTTTTRRRRSSSS:  Solves a general tridiagonal system
  937.          of linear equations using the _L_U factorization computed by SSSSGGGGTTTTTTTTRRRRFFFF or
  938.          CCCCGGGGTTTTTTTTRRRRFFFF.
  939.  
  940.               A X = B
  941.  
  942.                T
  943.               A X = B
  944.  
  945.                H
  946.               A X = B
  947.  
  948.  
  949.      *   SSSSHHHHGGGGEEEEQQQQZZZZ, DDDDHHHHGGGGEEEEQQQQZZZZ, CCCCHHHHGGGGEEEEQQQQZZZZ, ZZZZHHHHGGGGEEEEQQQQZZZZ:  Compute the eigenvalues of a matrix
  950.          pair (A,B) in generalized upper Hessenberg form using the QZ method
  951.  
  952.      *   SSSSHHHHSSSSEEEEIIIINNNN, DDDDHHHHSSSSEEEEIIIINNNN, CCCCHHHHSSSSEEEEIIIINNNN, ZZZZHHHHSSSSEEEEIIIINNNN:  Compute eigenvectors of a upper
  953.          Hessenberg matrix by inverse iteration
  954.  
  955.      *   SSSSHHHHSSSSEEEEQQQQRRRR, DDDDHHHHSSSSEEEEQQQQRRRR, CCCCHHHHSSSSEEEEQQQQRRRR, ZZZZHHHHSSSSEEEEQQQQRRRR:  Compute eigenvalues, Schur form, and
  956.          Schur vectors of a upper Hessenberg matrix
  957.  
  958.      *   SSSSLLLLAAAAMMMMCCCCHHHH, DDDDLLLLAAAAMMMMCCCCHHHH:  Computes machine-specific constants.
  959.  
  960.      *   SSSSLLLLAAAARRRRFFFF, DDDDLLLLAAAARRRRFFFF, CCCCLLLLAAAARRRRFFFF, ZZZZLLLLAAAARRRRFFFF:  Applies an elementary reflector.
  961.  
  962.      *   SSSSLLLLAAAARRRRFFFFBBBB, DDDDLLLLAAAARRRRFFFFBBBB, CCCCLLLLAAAARRRRFFFFBBBB, ZZZZLLLLAAAARRRRFFFFBBBB:  Applies a block reflector.
  963.  
  964.      *   SSSSLLLLAAAARRRRFFFFGGGG, DDDDLLLLAAAARRRRFFFFGGGG, CCCCLLLLAAAARRRRFFFFGGGG, ZZZZLLLLAAAARRRRFFFFGGGG:  Generates an elementary reflector.
  965.  
  966.      *   SSSSLLLLAAAARRRRFFFFTTTT, DDDDLLLLAAAARRRRFFFFTTTT, CCCCLLLLAAAARRRRFFFFTTTT, ZZZZLLLLAAAARRRRFFFFTTTT:  Forms the triangular factor of a
  967.          block reflector.
  968.  
  969.      *   SSSSLLLLAAAARRRRGGGGVVVV, DDDDLLLLAAAARRRRGGGGVVVV, CCCCLLLLAAAARRRRGGGGVVVV, ZZZZLLLLAAAARRRRGGGGVVVV:  Generate a vector of real or complex
  970.          plane rotations
  971.  
  972.      *   SSSSLLLLAAAARRRRNNNNVVVV, DDDDLLLLAAAARRRRNNNNVVVV, CCCCLLLLAAAARRRRNNNNVVVV, ZZZZLLLLAAAARRRRNNNNVVVV:  Generates a vector of random
  973.          numbers.
  974.  
  975.      *   SSSSLLLLAAAARRRRTTTTGGGG, DDDDLLLLAAAARRRRTTTTGGGG, CCCCLLLLAAAARRRRTTTTGGGG, ZZZZLLLLAAAARRRRTTTTGGGG:  Generates a plane rotation.
  976.  
  977.      *   SSSSLLLLAAAARRRRTTTTVVVV, DDDDLLLLAAAARRRRTTTTVVVV, CCCCLLLLAAAARRRRTTTTVVVV, ZZZZLLLLAAAARRRRTTTTVVVV:  Apply a vector of real or complex
  978.          plane rotations to two vectors
  979.  
  980.      *   SSSSLLLLAAAASSSSRRRR, DDDDLLLLAAAASSSSRRRR, CCCCLLLLAAAASSSSRRRR, ZZZZLLLLAAAASSSSRRRR:  Apply a sequence of real plane rotations
  981.          to a matrix
  982.  
  983.  
  984.  
  985.  
  986.  
  987.                                                                        PPPPaaaaggggeeee 11115555
  988.  
  989.  
  990.  
  991.  
  992.  
  993.  
  994. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  995.  
  996.  
  997.  
  998.      *   SSSSOOOOPPPPGGGGTTTTRRRR, DDDDOOOOPPPPGGGGTTTTRRRR, CCCCUUUUPPPPGGGGTTTTRRRR, ZZZZUUUUPPPPGGGGTTTTRRRR:  Generates the orthogonal/unitary
  999.          matrix _Q from SSSSSSSSPPPPTTTTRRRRDDDD/CCCCHHHHPPPPTTTTRRRRDDDD.
  1000.  
  1001.      *   SSSSOOOOPPPPMMMMTTTTRRRR, DDDDOOOOPPPPMMMMTTTTRRRR, CCCCUUUUPPPPMMMMTTTTRRRR, ZZZZUUUUPPPPMMMMTTTTRRRR:  Multiplies by the orthogonal/unitary
  1002.          matrix _Q from SSSSSSSSPPPPTTTTRRRRDDDD/CCCCHHHHPPPPTTTTRRRRDDDD.
  1003.  
  1004.      *   SSSSOOOORRRRGGGGBBBBRRRR, DDDDOOOORRRRGGGGBBBBRRRR, CCCCUUUUNNNNGGGGBBBBRRRR, ZZZZUUUUNNNNGGGGBBBBRRRR:  Generates one of the
  1005.          orghogonal/unitary matrices:
  1006.  
  1007.                     H
  1008.               Q or P
  1009.  
  1010.  
  1011.          from SSSSGGGGEEEEBBBBRRRRDDDD/CCCCGGGGEEEEBBBBRRRRDDDD.
  1012.  
  1013.      *   SSSSOOOORRRRGGGGHHHHRRRR, DDDDOOOORRRRGGGGHHHHRRRR, CCCCUUUUNNNNGGGGHHHHRRRR, ZZZZUUUUNNNNGGGGHHHHRRRR:  Generates the orthogonal/unitary
  1014.          matrix _Q from SSSSGGGGEEEEHHHHRRRRDDDD/CCCCGGGGEEEEHHHHRRRRDDDD.
  1015.  
  1016.      *   SSSSOOOORRRRGGGGLLLLQQQQ, DDDDOOOORRRRGGGGLLLLQQQQ, CCCCUUUUNNNNGGGGLLLLQQQQ, ZZZZUUUUNNNNGGGGLLLLQQQQ:  Generates all or part of the
  1017.          orthogonal or unitary matrix _Q from an _L_Q factorization determined by
  1018.          SSSSGGGGEEEELLLLQQQQFFFF or CCCCGGGGEEEELLLLQQQQFFFF.
  1019.  
  1020.      *   SSSSOOOORRRRGGGGQQQQLLLL, DDDDOOOORRRRGGGGQQQQLLLL, CCCCUUUUNNNNGGGGQQQQLLLL, ZZZZUUUUNNNNGGGGQQQQLLLL:  Generates all or part of the
  1021.          orthogonal or unitary matrix _Q from a _Q_L factorization determined by
  1022.          SSSSGGGGEEEEQQQQLLLLFFFF or CCCCGGGGEEEEQQQQLLLLFFFF.
  1023.  
  1024.      *   SSSSOOOORRRRGGGGQQQQRRRR, DDDDOOOORRRRGGGGQQQQRRRR, CCCCUUUUNNNNGGGGQQQQRRRR, ZZZZUUUUNNNNGGGGQQQQRRRR:  Generates all or part of the
  1025.          orthogonal or unitary matrix _Q from a _Q_R factorization determined by
  1026.          SSSSGGGGEEEEQQQQRRRRFFFF or CCCCGGGGEEEEQQQQRRRRFFFF.
  1027.  
  1028.      *   SSSSOOOORRRRGGGGRRRRQQQQ, DDDDOOOORRRRGGGGRRRRQQQQ, CCCCUUUUNNNNGGGGRRRRQQQQ, ZZZZUUUUNNNNGGGGRRRRQQQQ:  Generates all or part of the
  1029.          orthogonal or unitary matrix _Q from an _R_Q factorization determined by
  1030.          SSSSGGGGEEEERRRRQQQQFFFF or CCCCGGGGEEEERRRRQQQQFFFF.
  1031.  
  1032.      *   SSSSOOOORRRRGGGGTTTTRRRR, DDDDOOOORRRRGGGGTTTTRRRR, CCCCUUUUNNNNGGGGTTTTRRRR, ZZZZUUUUNNNNGGGGTTTTRRRR:  Generates the orthogonal/unitary
  1033.          matrix _Q from SSSSSSSSYYYYTTTTRRRRDDDD/CCCCHHHHEEEETTTTRRRRDDDD.
  1034.  
  1035.      *   SSSSOOOORRRRMMMMBBBBRRRR, DDDDOOOORRRRMMMMBBBBRRRR, CCCCUUUUNNNNMMMMBBBBRRRR, ZZZZUUUUNNNNMMMMBBBBRRRR:  Multiplies by one of the
  1036.          orthogonal/unitary matrices _Q or _P from SSSSGGGGEEEEBBBBRRRRDDDD/CCCCGGGGEEEEBBBBRRRRDDDD.
  1037.  
  1038.      *   SSSSOOOORRRRMMMMHHHHRRRR, DDDDOOOORRRRMMMMHHHHRRRR, CCCCUUUUNNNNMMMMHHHHRRRR, ZZZZUUUUNNNNMMMMHHHHRRRR:  Multiplies by the orthogonal/unitary
  1039.          matrix _Q from SSSSGGGGEEEEHHHHRRRRDDDD/CCCCGGGGEEEEHHHHRRRRDDDD.
  1040.  
  1041.      *   SSSSOOOORRRRMMMMLLLLQQQQ, DDDDOOOORRRRMMMMLLLLQQQQ, CCCCUUUUNNNNMMMMLLLLQQQQ, ZZZZUUUUNNNNMMMMLLLLQQQQ:  Multiplies a general matrix by the
  1042.          orthogonal or unitary matrix from an _L_Q factorization determined by
  1043.          SSSSGGGGEEEELLLLQQQQFFFF or CCCCGGGGEEEELLLLQQQQFFFF.
  1044.  
  1045.      *   SSSSOOOORRRRMMMMQQQQLLLL, DDDDOOOORRRRMMMMQQQQLLLL, CCCCUUUUNNNNMMMMQQQQLLLL, ZZZZUUUUNNNNMMMMQQQQLLLL:  Multiplies a general matrix by the
  1046.          orthogonal or unitary matrix from a _Q_L factorization determined by
  1047.          SSSSGGGGEEEEQQQQLLLLFFFF or CCCCGGGGEEEEQQQQLLLLFFFF.
  1048.  
  1049.  
  1050.  
  1051.  
  1052.  
  1053.                                                                        PPPPaaaaggggeeee 11116666
  1054.  
  1055.  
  1056.  
  1057.  
  1058.  
  1059.  
  1060. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  1061.  
  1062.  
  1063.  
  1064.      *   SSSSOOOORRRRMMMMQQQQRRRR, DDDDOOOORRRRMMMMQQQQRRRR, CCCCUUUUNNNNMMMMQQQQRRRR, ZZZZUUUUNNNNMMMMQQQQRRRR:  Multiplies a general matrix by the
  1065.          orthogonal or unitary matrix from a _Q_R factorization determined by
  1066.          SSSSGGGGEEEEQQQQRRRRFFFF or CCCCGGGGEEEEQQQQRRRRFFFF.
  1067.  
  1068.      *   SSSSOOOORRRRMMMMRRRRQQQQ, DDDDOOOORRRRMMMMRRRRQQQQ, CCCCUUUUNNNNMMMMRRRRQQQQ, ZZZZUUUUNNNNMMMMRRRRQQQQ:  Multiplies a general matrix by the
  1069.          orthogonal or unitary matrix from an _R_Q factorization determined by
  1070.          SSSSGGGGEEEERRRRQQQQFFFF or CCCCGGGGEEEERRRRQQQQFFFF.
  1071.  
  1072.      *   SSSSOOOORRRRMMMMRRRRZZZZ, DDDDOOOORRRRMMMMRRRRZZZZ, CCCCUUUUNNNNMMMMRRRRZZZZ, ZZZZUUUUNNNNMMMMRRRRZZZZ: Multiplies a general matrix by the
  1073.          orthogonal or unitary matrix from an RZ factorization determined by
  1074.          SSSSTTTTZZZZRRRRZZZZFFFF or CCCCTTTTZZZZRRRRZZZZFFFF.
  1075.  
  1076.      *   SSSSOOOORRRRMMMMTTTTRRRR, DDDDOOOORRRRMMMMTTTTRRRR, CCCCUUUUNNNNMMMMTTTTRRRR, ZZZZUUUUNNNNMMMMTTTTRRRR:  Multiplies by the orthogonal/unitary
  1077.          matrix _Q from SSSSSSSSYYYYTTTTRRRRDDDD/CCCCHHHHEEEETTTTRRRRDDDD.
  1078.  
  1079.      *   SSSSPPPPBBBBCCCCOOOONNNN, DDDDPPPPBBBBCCCCOOOONNNN, CCCCPPPPBBBBCCCCOOOONNNN, ZZZZPPPPBBBBCCCCOOOONNNN:  Estimates the reciprocal of the
  1080.          condition number of a symmetric or Hermitian positive definite band
  1081.          matrix, using the Cholesky factorization computed by SSSSPPPPBBBBTTTTRRRRFFFF or
  1082.          CCCCPPPPBBBBTTTTRRRRFFFF.
  1083.  
  1084.      *   SSSSPPPPBBBBEEEEQQQQUUUU, DDDDPPPPBBBBEEEEQQQQUUUU, CCCCPPPPBBBBEEEEQQQQUUUU, ZZZZPPPPBBBBEEEEQQQQUUUU:  Computes row and column scalings to
  1085.          equilibrate a symmetric or Hermitian positive definite band matrix
  1086.          and to reduce its condition number.
  1087.  
  1088.      *   SSSSPPPPBBBBRRRRFFFFSSSS, DDDDPPPPBBBBRRRRFFFFSSSS, CCCCPPPPBBBBRRRRFFFFSSSS, ZZZZPPPPBBBBRRRRFFFFSSSS:  Improves the computed solution to a
  1089.          symmetric or Hermitian positive definite banded system of linear
  1090.          equations _A_X = _B and provides error bounds for the solution.
  1091.  
  1092.      *   SSSSPPPPBBBBSSSSTTTTFFFF, DDDDPPPPBBBBSSSSTTTTFFFF, CCCCPPPPBBBBSSSSTTTTFFFF, ZZZZPPPPBBBBSSSSTTTTFFFF:  Compute a split Cholesky
  1093.          factorization of a symmetric or Hermitian positive definite band
  1094.          matrix.
  1095.  
  1096.      *   SSSSPPPPBBBBTTTTRRRRFFFF, DDDDPPPPBBBBTTTTRRRRFFFF, CCCCPPPPBBBBTTTTRRRRFFFF, ZZZZPPPPBBBBTTTTRRRRFFFF:  Computes the Cholesky factorization
  1097.          of a symmetric or Hermitian positive definite band matrix.
  1098.  
  1099.      *   SSSSPPPPBBBBTTTTRRRRSSSS, DDDDPPPPBBBBTTTTRRRRSSSS, CCCCPPPPBBBBTTTTRRRRSSSS, ZZZZPPPPBBBBTTTTRRRRSSSS:  Solves a symmetric or Hermitian
  1100.          positive definite banded system of linear equations _A_X = _B, using the
  1101.          Cholesky factorization computed by SSSSPPPPBBBBTTTTRRRRFFFF or CCCCPPPPBBBBTTTTRRRRFFFF.
  1102.  
  1103.      *   SSSSPPPPOOOOCCCCOOOONNNN, DDDDPPPPOOOOCCCCOOOONNNN, CCCCPPPPOOOOCCCCOOOONNNN, ZZZZPPPPOOOOCCCCOOOONNNN:  Estimates the reciprocal of the
  1104.          condition number of a symmetric or Hermitian positive definite
  1105.          matrix, using the Cholesky factorization computed by SSSSPPPPOOOOTTTTRRRRFFFF or
  1106.          CCCCPPPPOOOOTTTTRRRRFFFF.
  1107.  
  1108.      *   SSSSPPPPOOOOEEEEQQQQUUUU, DDDDPPPPOOOOEEEEQQQQUUUU, CCCCPPPPOOOOEEEEQQQQUUUU, ZZZZPPPPOOOOEEEEQQQQUUUU:  Computes row and column scalings to
  1109.          equilibrate a symmetric or Hermitian positive definite matrix and
  1110.          reduces its condition number.
  1111.  
  1112.      *   SSSSPPPPOOOORRRRFFFFSSSS, DDDDPPPPOOOORRRRFFFFSSSS, CCCCPPPPOOOORRRRFFFFSSSS, ZZZZPPPPOOOORRRRFFFFSSSS:  Improves the computed solution to a
  1113.          symmetric or Hermitian positive definite system of linear equations
  1114.          _A_X = _B and provides error bounds for the solution.
  1115.  
  1116.  
  1117.  
  1118.  
  1119.                                                                        PPPPaaaaggggeeee 11117777
  1120.  
  1121.  
  1122.  
  1123.  
  1124.  
  1125.  
  1126. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  1127.  
  1128.  
  1129.  
  1130.      *   SSSSPPPPOOOOTTTTRRRRFFFF, DDDDPPPPOOOOTTTTRRRRFFFF, CCCCPPPPOOOOTTTTRRRRFFFF, ZZZZPPPPOOOOTTTTRRRRFFFF:  Computes the Cholesky factorization
  1131.          of a symmetric or Hermitian positive definite matrix.
  1132.  
  1133.      *   SSSSPPPPOOOOTTTTRRRRIIII, DDDDPPPPOOOOTTTTRRRRIIII, CCCCPPPPOOOOTTTTRRRRIIII, ZZZZPPPPOOOOTTTTRRRRIIII:  Computes the inverse of a symmetric
  1134.          or Hermitian positive definite matrix, using the Cholesky
  1135.          factorization computed by SSSSPPPPOOOOTTTTRRRRFFFF or CCCCPPPPOOOOTTTTRRRRFFFF.
  1136.  
  1137.      *   SSSSPPPPOOOOTTTTRRRRSSSS, DDDDPPPPOOOOTTTTRRRRSSSS, CCCCPPPPOOOOTTTTRRRRSSSS, ZZZZPPPPOOOOTTTTRRRRSSSS:  Solves a symmetric or Hermitian
  1138.          positive definite system of linear equations _A_X = _B, using the
  1139.          Cholesky factorization computed by SSSSPPPPOOOOTTTTRRRRFFFF or CCCCPPPPOOOOTTTTRRRRFFFF.
  1140.  
  1141.      *   SSSSPPPPPPPPCCCCOOOONNNN, DDDDPPPPPPPPCCCCOOOONNNN, CCCCPPPPPPPPCCCCOOOONNNN, ZZZZPPPPPPPPCCCCOOOONNNN:  Estimates the reciprocal of the
  1142.          condition number of a symmetric or Hermitian positive definite matrix
  1143.          in packed storage, using the Cholesky factorization computed by
  1144.          SSSSPPPPPPPPTTTTRRRRFFFF or CCCCPPPPPPPPTTTTRRRRFFFF.
  1145.  
  1146.      *   SSSSPPPPPPPPEEEEQQQQUUUU, DDDDPPPPPPPPEEEEQQQQUUUU, CCCCPPPPPPPPEEEEQQQQUUUU, ZZZZPPPPPPPPEEEEQQQQUUUU:  Computes row and column scalings to
  1147.          equilibrate a symmetric or Hermitian positive definite matrix in
  1148.          packed storage and reduces its condition number.
  1149.  
  1150.      *   SSSSPPPPPPPPRRRRFFFFSSSS, DDDDPPPPPPPPRRRRFFFFSSSS, CCCCPPPPPPPPRRRRFFFFSSSS, ZZZZPPPPPPPPRRRRFFFFSSSS:  Improves the computed solution to a
  1151.          symmetric or Hermitian positive definite system of linear equations
  1152.          _A_X = _B (_A is held in packed storage) and provides error bounds for
  1153.          the solution.
  1154.  
  1155.      *   SSSSPPPPPPPPTTTTRRRRFFFF, DDDDPPPPPPPPTTTTRRRRFFFF, CCCCPPPPPPPPTTTTRRRRFFFF, ZZZZPPPPPPPPTTTTRRRRFFFF:  Computes the Cholesky factorization
  1156.          of a symmetric or Hermitian positive definite matrix in packed
  1157.          storage.
  1158.  
  1159.      *   SSSSPPPPPPPPTTTTRRRRIIII, DDDDPPPPPPPPTTTTRRRRIIII, CCCCPPPPPPPPTTTTRRRRIIII, ZZZZPPPPPPPPTTTTRRRRIIII:  Computes the inverse of a symmetric
  1160.          or Hermitian positive definite matrix in packed storage, using the
  1161.          Cholesky factorization computed by SSSSPPPPPPPPTTTTRRRRFFFF or CCCCPPPPPPPPTTTTRRRRFFFF.
  1162.  
  1163.      *   SSSSPPPPPPPPTTTTRRRRSSSS, DDDDPPPPPPPPTTTTRRRRSSSS, CCCCPPPPPPPPTTTTRRRRSSSS, ZZZZPPPPPPPPTTTTRRRRSSSS:  Solves a symmetric or Hermitian
  1164.          positive definite system of linear equations _A_X = _B (_A is held in
  1165.          packed storage) using the Cholesky factorization computed by SSSSPPPPPPPPTTTTRRRRFFFF
  1166.          or CCCCPPPPPPPPTTTTRRRRFFFF.
  1167.  
  1168.      *   SSSSPPPPTTTTCCCCOOOONNNN, DDDDPPPPTTTTCCCCOOOONNNN, CCCCPPPPTTTTCCCCOOOONNNN, ZZZZPPPPTTTTCCCCOOOONNNN:  Uses the LDLH factorization computed
  1169.          by SSSSPPPPTTTTTTTTRRRRFFFF or CCCCPPPPTTTTTTTTRRRRFFFF to compute the reciprocal of the condition number
  1170.          of a symmetric or Hermitian positive definite tridiagonal matrix.
  1171.  
  1172.      *   SSSSPPPPTTTTEEEEQQQQRRRR, DDDDPPPPTTTTEEEEQQQQRRRR, CCCCPPPPTTTTEEEEQQQQRRRR, ZZZZPPPPTTTTEEEEQQQQRRRR:  Compute eigenvalues and eigenvectors
  1173.          of a symmetric or Hermitian positive definite tridiagonal matrix.
  1174.  
  1175.      *   SSSSPPPPTTTTRRRRFFFFSSSS, DDDDPPPPTTTTRRRRFFFFSSSS, CCCCPPPPTTTTRRRRFFFFSSSS, ZZZZPPPPTTTTRRRRFFFFSSSS:  Improves the computed solution to a
  1176.          symmetric or Hermitian positive definite tridiagonal system of linear
  1177.          equations _A_X = _B and provides error bounds for the solution.
  1178.  
  1179.      *   SSSSPPPPTTTTTTTTRRRRFFFF, DDDDPPPPTTTTTTTTRRRRFFFF, CCCCPPPPTTTTTTTTRRRRFFFF, ZZZZPPPPTTTTTTTTRRRRFFFF:  Computes the LDLH factorization of a
  1180.          symmetric or Hermitian positive definite tridiagonal matrix.
  1181.  
  1182.  
  1183.  
  1184.  
  1185.                                                                        PPPPaaaaggggeeee 11118888
  1186.  
  1187.  
  1188.  
  1189.  
  1190.  
  1191.  
  1192. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  1193.  
  1194.  
  1195.  
  1196.      *   SSSSPPPPTTTTTTTTRRRRSSSS, DDDDPPPPTTTTTTTTRRRRSSSS, CCCCPPPPTTTTTTTTRRRRSSSS, ZZZZPPPPTTTTTTTTRRRRSSSS:  Uses the LDLH factorization computed
  1197.          by SSSSPPPPTTTTTTTTRRRRFFFF or CCCCPPPPTTTTTTTTRRRRFFFF to solve a symmetric or Hermitian positive
  1198.          definite tridiagonal system of linear equations.
  1199.  
  1200.      *   SSSSSSSSBBBBGGGGSSSSTTTT, DDDDSSSSBBBBGGGGSSSSTTTT, CCCCHHHHBBBBGGGGSSSSTTTT, ZZZZHHHHBBBBGGGGSSSSTTTT:  Reduce a symmetric or Hermitian
  1201.          definite banded generalized eigenproblem to standard form.
  1202.  
  1203.      *   SSSSSSSSBBBBTTTTRRRRDDDD, DDDDSSSSBBBBTTTTRRRRDDDD, CCCCHHHHBBBBTTTTRRRRDDDD, ZZZZHHHHBBBBTTTTRRRRDDDD:  Reduce a symmetric or Hermitian band
  1204.          matrix to real symmetric tridiagonal form by an orthogonal/unitary
  1205.          transformation.
  1206.  
  1207.      *   SSSSSSSSPPPPCCCCOOOONNNN, DDDDSSSSPPPPCCCCOOOONNNN, CCCCSSSSPPPPCCCCOOOONNNN, ZZZZSSSSPPPPCCCCOOOONNNN:  Estimates the reciprocal of the
  1208.          condition number of a real or complex symmetric indefinite matrix in
  1209.          packed storage, using the factorization computed by SSSSSSSSPPPPTTTTRRRRFFFF or CCCCSSSSPPPPTTTTRRRRFFFF.
  1210.  
  1211.      *   SSSSSSSSPPPPGGGGSSSSTTTT, DDDDSSSSPPPPGGGGSSSSTTTT, CCCCHHHHPPPPGGGGSSSSTTTT, ZZZZHHHHPPPPGGGGSSSSTTTT:  Reduce a symmetric or Hermitian
  1212.          definite generalized eigenproblem to standard form, using packed
  1213.          storage.
  1214.  
  1215.      *   SSSSSSSSPPPPRRRRFFFFSSSS, DDDDSSSSPPPPRRRRFFFFSSSS, CCCCSSSSPPPPRRRRFFFFSSSS, ZZZZSSSSPPPPRRRRFFFFSSSS:  Improves the computed solution to a
  1216.          real or complex symmetric indefinite system of linear equations _A_X =
  1217.          _B (_A is held in packed storage) and provides error bounds for the
  1218.          solution.
  1219.  
  1220.      *   SSSSSSSSPPPPTTTTRRRRDDDD, DDDDSSSSPPPPTTTTRRRRDDDD, CCCCHHHHPPPPTTTTRRRRDDDD, ZZZZHHHHPPPPTTTTRRRRDDDD:  Reduces a symmetric/Hermitian packed
  1221.          matrix A to real symmetric tridiagonal form by an orthogonal/unitary
  1222.          transformation.
  1223.  
  1224.      *   SSSSSSSSPPPPTTTTRRRRFFFF, DDDDSSSSPPPPTTTTRRRRFFFF, CCCCSSSSPPPPTTTTRRRRFFFF, ZZZZSSSSPPPPTTTTRRRRFFFF:  Computes the factorization of a real
  1225.          or complex symmetric indefinite matrix in packed storage, using the
  1226.          diagonal pivoting method.
  1227.  
  1228.      *   SSSSSSSSPPPPTTTTRRRRIIII, DDDDSSSSPPPPTTTTRRRRIIII, CCCCSSSSPPPPTTTTRRRRIIII, ZZZZSSSSPPPPTTTTRRRRIIII:  Computes the inverse of a real or
  1229.          complex symmetric indefinite matrix in packed storage, using the
  1230.          factorization computed by SSSSSSSSPPPPTTTTRRRRFFFF or CCCCSSSSPPPPTTTTRRRRFFFF.
  1231.  
  1232.      *   SSSSSSSSPPPPTTTTRRRRSSSS, DDDDSSSSPPPPTTTTRRRRSSSS, CCCCSSSSPPPPTTTTRRRRSSSS, ZZZZSSSSPPPPTTTTRRRRSSSS:  Solves a real or complex symmetric
  1233.          indefinite system of linear equations _A_X = _B (_A is held in packed
  1234.          storage) using the factorization computed by SSSSSSSSPPPPTTTTRRRRFFFF or CCCCSSSSPPPPTTTTRRRRFFFF.
  1235.  
  1236.      *   SSSSSSSSTTTTEEEEBBBBZZZZ, DDDDSSSSTTTTEEEEBBBBZZZZ:  Compute eigenvalues of a symmetric tridiagonal
  1237.          matrix by bisection.
  1238.  
  1239.      *   SSSSSSSSTTTTEEEEDDDDCCCC, DDDDSSSSTTTTEEEEDDDDCCCC, CCCCSSSSTTTTEEEEDDDDCCCC, ZZZZSSSSTTTTEEEEDDDDCCCC: Computes all eigenvalues and,
  1240.          optionally, eigenvectors of a symmetric tridiagonal matrix using the
  1241.          divide and conquer algorithm.
  1242.  
  1243.      *   SSSSSSSSTTTTEEEEGGGGRRRR, DDDDSSSSTTTTEEEEGGGGRRRR, CCCCSSSSTTTTEEEEGGGGRRRR, ZZZZSSSSTTTTEEEEGGGGRRRR: Computes selected eigenvalues and,
  1244.          optionally, eigenvectors of a real symmetric tridiagonal matrix using
  1245.          the Relatively Robust Representations.
  1246.  
  1247.  
  1248.  
  1249.  
  1250.  
  1251.                                                                        PPPPaaaaggggeeee 11119999
  1252.  
  1253.  
  1254.  
  1255.  
  1256.  
  1257.  
  1258. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  1259.  
  1260.  
  1261.  
  1262.      *   SSSSSSSSTTTTEEEEIIIINNNN, DDDDSSSSTTTTEEEEIIIINNNN, CCCCSSSSTTTTEEEEIIIINNNN, ZZZZSSSSTTTTEEEEIIIINNNN:  Compute eigenvectors of a real
  1263.          symmetric tridiagonal matrix by inverse iteration.
  1264.  
  1265.      *   SSSSSSSSTTTTEEEEQQQQRRRR, DDDDSSSSTTTTEEEEQQQQRRRR, CCCCSSSSTTTTEEEEQQQQRRRR, ZZZZSSSSTTTTEEEEQQQQRRRR:  Compute eigenvalues and eigenvectors
  1266.          of a real symmetric tridiagonal matrix using the implicit QL or QR
  1267.          method.
  1268.  
  1269.      *   SSSSSSSSTTTTEEEERRRRFFFF, DDDDSSSSTTTTEEEERRRRFFFF:  Compute all eigenvalues of a symmetric tridiagonal
  1270.          matrix using the root-free variant of the QL or QR algorithm.
  1271.  
  1272.      *   SSSSSSSSYYYYCCCCOOOONNNN, DDDDSSSSYYYYCCCCOOOONNNN, CCCCSSSSYYYYCCCCOOOONNNN, ZZZZSSSSYYYYCCCCOOOONNNN:  Estimates the reciprocal of the
  1273.          condition number of a real or complex symmetric indefinite matrix,
  1274.          using the factorization computed by SSSSSSSSYYYYTTTTRRRRFFFF or CCCCSSSSYYYYTTTTRRRRFFFF.
  1275.  
  1276.      *   SSSSSSSSYYYYGGGGSSSSTTTT, DDDDSSSSYYYYGGGGSSSSTTTT, CCCCHHHHEEEEGGGGSSSSTTTT, ZZZZHHHHEEEEGGGGSSSSTTTT:  Reduce a symmetric or Hermitian
  1277.          definite generalized eigenproblem to standard form.
  1278.  
  1279.      *   SSSSSSSSYYYYRRRRFFFFSSSS, DDDDSSSSYYYYRRRRFFFFSSSS, CCCCSSSSYYYYRRRRFFFFSSSS, ZZZZSSSSYYYYRRRRFFFFSSSS:  Improves the computed solution to a
  1280.          real or complex symmetric indefinite system of linear equations _A_X =
  1281.          _B and provides error bounds for the solution.
  1282.  
  1283.      *   SSSSSSSSYYYYTTTTRRRRDDDD, DDDDSSSSYYYYTTTTRRRRDDDD, CCCCHHHHEEEETTTTRRRRDDDD, ZZZZHHHHEEEETTTTRRRRDDDD:  Reduces a symmetric/Hermitian matrix
  1284.          _A to real symmetric tridiagonal form by an orthogonal/unitary
  1285.          transformation.
  1286.  
  1287.      *   SSSSSSSSYYYYTTTTRRRRFFFF, DDDDSSSSYYYYTTTTRRRRFFFF, CCCCSSSSYYYYTTTTRRRRFFFF, ZZZZSSSSYYYYTTTTRRRRFFFF:  Computes the factorization of a real
  1288.          complex symmetric indefinite matrix, using the diagonal pivoting
  1289.          method.
  1290.  
  1291.      *   SSSSSSSSYYYYTTTTRRRRIIII, DDDDSSSSYYYYTTTTRRRRIIII, CCCCSSSSYYYYTTTTRRRRIIII, ZZZZSSSSYYYYTTTTRRRRIIII:  Computes the inverse of a real or
  1292.          complex symmetric indefinite matrix, using the factorization computed
  1293.          by SSSSSSSSYYYYTTTTRRRRFFFF or CCCCSSSSYYYYTTTTRRRRFFFF.
  1294.  
  1295.      *   SSSSSSSSYYYYTTTTRRRRSSSS, DDDDSSSSYYYYTTTTRRRRSSSS, CCCCSSSSYYYYTTTTRRRRSSSS, ZZZZSSSSYYYYTTTTRRRRSSSS:  Solves a real or complex symmetric
  1296.          indefinite system of linear equations _A_X = _B, using the factorization
  1297.          computed by SSSSSSSSYYYYTTTTRRRRFFFF or CCCCSSSSYYYYTTTTRRRRFFFF.
  1298.  
  1299.      *   SSSSTTTTBBBBCCCCOOOONNNN, DDDDTTTTBBBBCCCCOOOONNNN, CCCCTTTTBBBBCCCCOOOONNNN, ZZZZTTTTBBBBCCCCOOOONNNN:  Estimates the reciprocal of the
  1300.          condition number of a triangular band matrix, in either the 1-norm or
  1301.          the infinity-norm.
  1302.  
  1303.      *   SSSSTTTTBBBBRRRRFFFFSSSS, DDDDTTTTBBBBRRRRFFFFSSSS, CCCCTTTTBBBBRRRRFFFFSSSS, ZZZZTTTTBBBBRRRRFFFFSSSS:  Provides error bounds for the
  1304.          solution of any of the following triangular banded systems of linear
  1305.          equations:
  1306.  
  1307.               A X = B
  1308.  
  1309.                T
  1310.               A X = B
  1311.  
  1312.                H
  1313.               A X = B
  1314.  
  1315.  
  1316.  
  1317.                                                                        PPPPaaaaggggeeee 22220000
  1318.  
  1319.  
  1320.  
  1321.  
  1322.  
  1323.  
  1324. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  1325.  
  1326.  
  1327.  
  1328.      *   SSSSTTTTBBBBTTTTRRRRSSSS, DDDDTTTTBBBBTTTTRRRRSSSS, CCCCTTTTBBBBTTTTRRRRSSSS, ZZZZTTTTBBBBTTTTRRRRSSSS:  Solves any of the following
  1329.          triangular banded systems of linear equations:
  1330.  
  1331.               A X = B
  1332.  
  1333.                T
  1334.               A X = B
  1335.  
  1336.                H
  1337.               A X = B
  1338.  
  1339.  
  1340.      *   SSSSTTTTGGGGEEEEVVVVCCCC, DDDDTTTTGGGGEEEEVVVVCCCC, CCCCTTTTGGGGEEEEVVVVCCCC, ZZZZTTTTGGGGEEEEVVVVCCCC:  Compute eigenvectors of a pair of
  1341.          matrices (A,B) in generalized Schur form.
  1342.  
  1343.      *   SSSSTTTTGGGGEEEEXXXXCCCC, DDDDTTTTGGGGEEEEXXXXCCCC, CCCCTTTTGGGGEEEEXXXXCCCC, ZZZZTTTTGGGGEEEEXXXXCCCC: Reorders the generalized real-
  1344.          Schur/Schur decomposition of a matrix pair (A,B) using an
  1345.          orthogonal/unitary equivalence transformation so that the diagonal
  1346.          block of (A,B) with row index IFST is moved to row ILST.
  1347.  
  1348.      *   SSSSTTTTGGGGSSSSEEEENNNN, DDDDTTTTGGGGSSSSEEEENNNN, CCCCTTTTGGGGSSSSEEEENNNN, ZZZZTTTTGGGGSSSSEEEENNNN: Reorders the generalized real-
  1349.          Schur/Schur decomposition of a matrix pair (A,B), computes the
  1350.          generalized eigenvalues of the reordered matrix pair, and,
  1351.          optionally, computes the estimates of reciprocal condition numbers
  1352.          for eigenvalues and eigenspaces.
  1353.  
  1354.      *   SSSSTTTTGGGGSSSSJJJJAAAA, DDDDTTTTGGGGSSSSJJJJAAAA, CCCCTTTTGGGGSSSSJJJJAAAA, ZZZZTTTTGGGGSSSSJJJJAAAA: Computes the generalized singular
  1355.          value decomposition (GSVD) of a pair of upper triangular (or
  1356.          trapezoidal) matrices, which may be obtained by the preprocessing
  1357.          subroutine SSSSGGGGGGGGSSSSVVVVPPPP/CCCCGGGGGGGGSSSSVVVVPPPP.
  1358.  
  1359.      *   SSSSTTTTGGGGSSSSNNNNAAAA, DDDDTTTTGGGGSSSSNNNNAAAA, CCCCTTTTGGGGSSSSNNNNAAAA, ZZZZTTTTGGGGSSSSNNNNAAAA: Estimates reciprocal condition
  1360.          numbers for specified eigenvalues and/or eigenvectors of a matrix
  1361.          pair (A,B) in generalized real-Schur/Schur canonical form.
  1362.  
  1363.      *   SSSSTTTTGGGGSSSSYYYYLLLL, DDDDTTTTGGGGSSSSYYYYLLLL, CCCCTTTTGGGGSSSSYYYYLLLL, ZZZZTTTTGGGGSSSSYYYYLLLL: Solves the generalized Sylvester
  1364.          equation.
  1365.  
  1366.      *   SSSSTTTTPPPPCCCCOOOONNNN, DDDDTTTTPPPPCCCCOOOONNNN, CCCCTTTTPPPPCCCCOOOONNNN, ZZZZTTTTPPPPCCCCOOOONNNN:  Estimates the reciprocal of the
  1367.          condition number of a triangular matrix in packed storage, in either
  1368.          the 1-norm or the infinity-norm.
  1369.  
  1370.      *   SSSSTTTTPPPPRRRRFFFFSSSS, DDDDTTTTPPPPRRRRFFFFSSSS, CCCCTTTTPPPPRRRRFFFFSSSS, ZZZZTTTTPPPPRRRRFFFFSSSS:  Provides error bounds for the
  1371.          solution of any of the following triangular systems of linear
  1372.          equations where _A is held in packed storage.
  1373.  
  1374.               A X = B
  1375.  
  1376.                T
  1377.               A X = B
  1378.  
  1379.                H
  1380.  
  1381.  
  1382.  
  1383.                                                                        PPPPaaaaggggeeee 22221111
  1384.  
  1385.  
  1386.  
  1387.  
  1388.  
  1389.  
  1390. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  1391.  
  1392.  
  1393.  
  1394.               A X = B
  1395.  
  1396.  
  1397.      *   SSSSTTTTPPPPTTTTRRRRIIII, DDDDTTTTPPPPTTTTRRRRIIII, CCCCTTTTPPPPTTTTRRRRIIII, ZZZZTTTTPPPPTTTTRRRRIIII:  Computes the inverse of a triangular
  1398.          matrix in packed storage.
  1399.  
  1400.      *   SSSSTTTTPPPPTTTTRRRRSSSS, DDDDTTTTPPPPTTTTRRRRSSSS, CCCCTTTTPPPPTTTTRRRRSSSS, ZZZZTTTTPPPPTTTTRRRRSSSS:  Solves any of the following
  1401.          triangular systems of linear equations where _A is held in packed
  1402.          storage.
  1403.  
  1404.               A X = B
  1405.  
  1406.                T
  1407.               A X = B
  1408.  
  1409.                H
  1410.               A X = B
  1411.  
  1412.  
  1413.      *   SSSSTTTTRRRRCCCCOOOONNNN, DDDDTTTTRRRRCCCCOOOONNNN, CCCCTTTTRRRRCCCCOOOONNNN, ZZZZTTTTRRRRCCCCOOOONNNN:  Estimates the reciprocal of the
  1414.          condition number of a triangular matrix, in either the 1-norm or the
  1415.          infinity-norm.
  1416.  
  1417.      *   SSSSTTTTRRRREEEEVVVVCCCC, DDDDTTTTRRRREEEEVVVVCCCC, CCCCTTTTRRRREEEEVVVVCCCC, ZZZZTTTTRRRREEEEVVVVCCCC:  Compute eigenvectors of a real upper
  1418.          quasi-triangular matrix or a complex triangular matrix.
  1419.  
  1420.      *   SSSSTTTTRRRREEEEXXXXCCCC, DDDDTTTTRRRREEEEXXXXCCCC, CCCCTTTTRRRREEEEXXXXCCCC, ZZZZTTTTRRRREEEEXXXXCCCC:  Exchange diagonal blocks in the real
  1421.          Schur factorization of a real or complex matrix.
  1422.  
  1423.      *   SSSSTTTTRRRRRRRRFFFFSSSS, DDDDTTTTRRRRRRRRFFFFSSSS, CCCCTTTTRRRRRRRRFFFFSSSS, ZZZZTTTTRRRRRRRRFFFFSSSS:  Provides error bounds for the
  1424.          solution of any of the following triangular systems of linear
  1425.          equations:
  1426.  
  1427.               A X = B
  1428.  
  1429.                T
  1430.               A X = B
  1431.  
  1432.                H
  1433.               A X = B
  1434.  
  1435.  
  1436.      *   SSSSTTTTRRRRSSSSEEEENNNN, DDDDTTTTRRRRSSSSEEEENNNN, CCCCTTTTRRRRSSSSEEEENNNN, ZZZZTTTTRRRRSSSSEEEENNNN:  Compute condition numbers to measure
  1437.          the sensitivity of a cluster of eigenvalues and its corresponding
  1438.          invariant subspace.
  1439.  
  1440.      *   SSSSTTTTRRRRSSSSNNNNAAAA, DDDDTTTTRRRRSSSSNNNNAAAA, CCCCTTTTRRRRSSSSNNNNAAAA, ZZZZTTTTRRRRSSSSNNNNAAAA:  Compute condition numbers for
  1441.          specified eigenvalues and eigenvectors of a real upper quasi-
  1442.          triangular matrix or complex upper triangular matrix.
  1443.  
  1444.  
  1445.  
  1446.  
  1447.  
  1448.  
  1449.                                                                        PPPPaaaaggggeeee 22222222
  1450.  
  1451.  
  1452.  
  1453.  
  1454.  
  1455.  
  1456. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  1457.  
  1458.  
  1459.  
  1460.      *   SSSSTTTTRRRRSSSSYYYYLLLL, DDDDTTTTRRRRSSSSYYYYLLLL, CCCCTTTTRRRRSSSSYYYYLLLL, ZZZZTTTTRRRRSSSSYYYYLLLL:  Solve the Sylvester matrix equation.
  1461.  
  1462.      *   SSSSTTTTRRRRTTTTRRRRIIII, DDDDTTTTRRRRTTTTRRRRIIII, CCCCTTTTRRRRTTTTRRRRIIII, ZZZZTTTTRRRRTTTTRRRRIIII:  Computes the inverse of a triangular
  1463.          matrix.
  1464.  
  1465.      *   SSSSTTTTRRRRTTTTRRRRSSSS, DDDDTTTTRRRRTTTTRRRRSSSS, CCCCTTTTRRRRTTTTRRRRSSSS, ZZZZTTTTRRRRTTTTRRRRSSSS:  Solves any of the following
  1466.          triangular systems of linear equations:
  1467.  
  1468.               A X = B
  1469.                T
  1470.               A X = B
  1471.  
  1472.                H
  1473.               A X = B
  1474.  
  1475.  
  1476.      *   SSSSTTTTZZZZRRRRQQQQFFFF, DDDDTTTTZZZZRRRRQQQQFFFF, CCCCTTTTZZZZRRRRQQQQFFFF, ZZZZTTTTZZZZRRRRQQQQFFFF:  Reduces an upper trapezoidal matrix
  1477.          to upper triangular form by an orthogonal/unitary transformation.
  1478.  
  1479.      *   SSSSTTTTZZZZRRRRZZZZFFFF, DDDDTTTTZZZZRRRRZZZZFFFF, CCCCTTTTZZZZRRRRZZZZFFFF, ZZZZTTTTZZZZRRRRZZZZFFFF: Reduces an upper trapezoidal matrix
  1480.          to upper triangular form by an orthogonal/unitary transformation.
  1481.  
  1482.      In addition to the driver and computational routines, the following
  1483.      auxiliary routines are also available.  For information about using these
  1484.      routines, see the individual man pages.
  1485.  
  1486.      CCCCLLLLAAAACCCCGGGGVVVV ZZZZLLLLAAAACCCCGGGGVVVV                           CCCCLLLLAAAACCCCRRRRMMMM ZZZZLLLLAAAACCCCRRRRMMMM
  1487.  
  1488.      CCCCLLLLAAAACCCCRRRRTTTT ZZZZLLLLAAAACCCCRRRRTTTT                           CCCCLLLLAAAAEEEESSSSYYYY ZZZZLLLLAAAAEEEESSSSYYYY
  1489.  
  1490.      CCCCRRRROOOOTTTT ZZZZRRRROOOOTTTT CCCCSSSSRRRROOOOTTTT ZZZZDDDDRRRROOOOTTTT                   CCCCSSSSPPPPMMMMVVVV ZZZZSSSSPPPPMMMMVVVV
  1491.  
  1492.      CCCCSSSSPPPPRRRR ZZZZSSSSPPPPRRRR                               CCCCSSSSYYYYMMMMVVVV ZZZZSSSSYYYYMMMMVVVV
  1493.  
  1494.      CCCCSSSSYYYYRRRR ZZZZSSSSYYYYRRRR                               IIIICCCCMMMMAAAAXXXX1111 IIIIZZZZMMMMAAAAXXXX1111
  1495.  
  1496.      SSSSCCCCSSSSUUUUMMMM1111 DDDDZZZZSSSSUUUUMMMM1111                           SSSSGGGGBBBBTTTTFFFF2222 DDDDGGGGBBBBTTTTFFFF2222 CCCCGGGGBBBBTTTTFFFF2222 ZZZZGGGGBBBBTTTTFFFF2222
  1497.  
  1498.      SSSSGGGGEEEEBBBBDDDD2222 DDDDGGGGEEEEBBBBDDDD2222 CCCCGGGGEEEEBBBBDDDD2222 ZZZZGGGGEEEEBBBBDDDD2222             SSSSGGGGEEEEHHHHDDDD2222 DDDDGGGGEEEEHHHHDDDD2222 CCCCGGGGEEEEHHHHDDDD2222 ZZZZGGGGEEEEHHHHDDDD2222
  1499.  
  1500.      SSSSGGGGEEEELLLLQQQQ2222 DDDDGGGGEEEELLLLQQQQ2222 CCCCGGGGEEEELLLLQQQQ2222 ZZZZGGGGEEEELLLLQQQQ2222             SSSSGGGGEEEEQQQQLLLL2222 DDDDGGGGEEEEQQQQLLLL2222 CCCCGGGGEEEEQQQQLLLL2222 ZZZZGGGGEEEEQQQQLLLL2222
  1501.  
  1502.      SSSSGGGGEEEEQQQQRRRR2222 DDDDGGGGEEEEQQQQRRRR2222 CCCCGGGGEEEEQQQQRRRR2222 ZZZZGGGGEEEEQQQQRRRR2222             SSSSGGGGEEEETTTTFFFF2222 DDDDGGGGEEEETTTTFFFF2222 CCCCGGGGEEEETTTTFFFF2222 ZZZZGGGGEEEETTTTFFFF2222
  1503.  
  1504.      SSSSLLLLAAAABBBBAAAADDDD DDDDLLLLAAAABBBBAAAADDDD                           SSSSLLLLAAAABBBBRRRRDDDD DDDDLLLLAAAABBBBRRRRDDDD CCCCLLLLAAAABBBBRRRRDDDD ZZZZLLLLAAAABBBBRRRRDDDD
  1505.  
  1506.      SSSSLLLLAAAACCCCOOOONNNN DDDDLLLLAAAACCCCOOOONNNN CCCCLLLLAAAACCCCOOOONNNN ZZZZLLLLAAAACCCCOOOONNNN             SSSSLLLLAAAACCCCPPPPYYYY DDDDLLLLAAAACCCCPPPPYYYY CCCCLLLLAAAACCCCPPPPYYYY ZZZZLLLLAAAACCCCPPPPYYYY
  1507.  
  1508.      SSSSLLLLAAAADDDDIIIIVVVV DDDDLLLLAAAADDDDIIIIVVVV CCCCLLLLAAAADDDDIIIIVVVV ZZZZLLLLAAAADDDDIIIIVVVV             SSSSLLLLAAAAEEEE2222 DDDDLLLLAAAAEEEE2222
  1509.  
  1510.  
  1511.  
  1512.  
  1513.  
  1514.  
  1515.                                                                        PPPPaaaaggggeeee 22223333
  1516.  
  1517.  
  1518.  
  1519.  
  1520.  
  1521.  
  1522. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  1523.  
  1524.  
  1525.  
  1526.      SSSSLLLLAAAAEEEEBBBBZZZZ DDDDLLLLAAAAEEEEBBBBZZZZ                           SSSSLLLLAAAAEEEEDDDD0000 DDDDLLLLAAAAEEEEDDDD0000 CCCCLLLLAAAAEEEEDDDD0000 ZZZZLLLLAAAAEEEEDDDD0000
  1527.  
  1528.      SSSSLLLLAAAAEEEEDDDD1111 DDDDLLLLAAAAEEEEDDDD1111                           SSSSLLLLAAAAEEEEDDDD2222 DDDDLLLLAAAAEEEEDDDD2222
  1529.  
  1530.      SSSSLLLLAAAAEEEEDDDD3333 DDDDLLLLAAAAEEEEDDDD3333                           SSSSLLLLAAAAEEEEDDDD4444 DDDDLLLLAAAAEEEEDDDD4444
  1531.  
  1532.      SSSSLLLLAAAAEEEEDDDD5555 DDDDLLLLAAAAEEEEDDDD5555                           SSSSLLLLAAAAEEEEDDDD6666 DDDDLLLLAAAAEEEEDDDD6666
  1533.  
  1534.      SSSSLLLLAAAAEEEEDDDD7777 DDDDLLLLAAAAEEEEDDDD7777 CCCCLLLLAAAAEEEEDDDD7777 ZZZZLLLLAAAAEEEEDDDD7777             SSSSLLLLAAAAEEEEDDDD8888 DDDDLLLLAAAAEEEEDDDD8888 CCCCLLLLAAAAEEEEDDDD8888 ZZZZLLLLAAAAEEEEDDDD8888
  1535.  
  1536.      SSSSLLLLAAAAEEEEDDDD9999 DDDDLLLLAAAAEEEEDDDD9999                           SSSSLLLLAAAAEEEEDDDDAAAA DDDDLLLLAAAAEEEEDDDDAAAA
  1537.  
  1538.      SSSSLLLLAAAAEEEEIIIINNNN DDDDLLLLAAAAEEEEIIIINNNN CCCCLLLLAAAAEEEEIIIINNNN ZZZZLLLLAAAAEEEEIIIINNNN             SSSSLLLLAAAAEEEEVVVV2222 DDDDLLLLAAAAEEEEVVVV2222 CCCCLLLLAAAAEEEEVVVV2222 ZZZZLLLLAAAAEEEEVVVV2222
  1539.  
  1540.      SSSSLLLLAAAAEEEEXXXXCCCC DDDDLLLLAAAAEEEEXXXXCCCC                           SSSSLLLLAAAAGGGG2222 DDDDLLLLAAAAGGGG2222
  1541.  
  1542.      SSSSLLLLAAAAGGGGTTTTFFFF DDDDLLLLAAAAGGGGTTTTFFFF                           SSSSLLLLAAAAGGGGTTTTMMMM DDDDLLLLAAAAGGGGTTTTMMMM CCCCLLLLAAAAGGGGTTTTMMMM ZZZZLLLLAAAAGGGGTTTTMMMM
  1543.  
  1544.      SSSSLLLLAAAAGGGGTTTTSSSS DDDDLLLLAAAAGGGGTTTTSSSS                           SSSSLLLLAAAAHHHHQQQQRRRR DDDDLLLLAAAAHHHHQQQQRRRR CCCCLLLLAAAAHHHHQQQQRRRR ZZZZLLLLAAAAHHHHQQQQRRRR
  1545.  
  1546.      SSSSLLLLAAAAHHHHRRRRDDDD DDDDLLLLAAAAHHHHRRRRDDDD CCCCLLLLAAAAHHHHRRRRDDDD ZZZZLLLLAAAAHHHHRRRRDDDD             SSSSLLLLAAAAIIIICCCC1111 DDDDLLLLAAAAIIIICCCC1111 CCCCLLLLAAAAIIIICCCC1111 ZZZZLLLLAAAAIIIICCCC1111
  1547.  
  1548.      SSSSLLLLAAAALLLLNNNN2222 DDDDLLLLAAAALLLLNNNN2222                           SSSSLLLLAAAAMMMMRRRRGGGG DDDDLLLLAAAAMMMMRRRRGGGG
  1549.  
  1550.      SSSSLLLLAAAANNNNGGGGBBBB DDDDLLLLAAAANNNNGGGGBBBB CCCCLLLLAAAANNNNGGGGBBBB ZZZZLLLLAAAANNNNGGGGBBBB             SSSSLLLLAAAANNNNGGGGEEEE DDDDLLLLAAAANNNNGGGGEEEE CCCCLLLLAAAANNNNGGGGEEEE ZZZZLLLLAAAANNNNGGGGEEEE
  1551.  
  1552.      SSSSLLLLAAAANNNNGGGGTTTT DDDDLLLLAAAANNNNGGGGTTTT CCCCLLLLAAAANNNNGGGGTTTT ZZZZLLLLAAAANNNNGGGGTTTT             SSSSLLLLAAAANNNNHHHHSSSS DDDDLLLLAAAANNNNHHHHSSSS CCCCLLLLAAAANNNNHHHHSSSS ZZZZLLLLAAAANNNNHHHHSSSS
  1553.  
  1554.      SSSSLLLLAAAANNNNSSSSBBBB DDDDLLLLAAAANNNNSSSSBBBB CCCCLLLLAAAANNNNSSSSBBBB ZZZZLLLLAAAANNNNSSSSBBBB             CCCCLLLLAAAANNNNHHHHBBBB ZZZZLLLLAAAANNNNHHHHBBBB
  1555.  
  1556.      SSSSLLLLAAAANNNNSSSSPPPP DDDDLLLLAAAANNNNSSSSPPPP CCCCLLLLAAAANNNNSSSSPPPP ZZZZLLLLAAAANNNNSSSSPPPP             CCCCLLLLAAAANNNNHHHHPPPP ZZZZLLLLAAAANNNNHHHHPPPP
  1557.  
  1558.      SSSSLLLLAAAANNNNSSSSTTTT DDDDLLLLAAAANNNNSSSSTTTT CCCCLLLLAAAANNNNSSSSTTTT ZZZZLLLLAAAANNNNSSSSTTTT             SSSSLLLLAAAANNNNSSSSYYYY DDDDLLLLAAAANNNNSSSSYYYY CCCCLLLLAAAANNNNSSSSYYYY ZZZZLLLLAAAANNNNSSSSYYYY
  1559.  
  1560.      CCCCLLLLAAAANNNNHHHHEEEE ZZZZLLLLAAAANNNNHHHHEEEE                           SSSSLLLLAAAANNNNTTTTBBBB DDDDLLLLAAAANNNNTTTTBBBB CCCCLLLLAAAANNNNTTTTBBBB ZZZZLLLLAAAANNNNTTTTBBBB
  1561.  
  1562.      SSSSLLLLAAAANNNNTTTTPPPP DDDDLLLLAAAANNNNTTTTPPPP CCCCLLLLAAAANNNNTTTTPPPP ZZZZLLLLAAAANNNNTTTTPPPP             SSSSLLLLAAAANNNNTTTTRRRR DDDDLLLLAAAANNNNTTTTRRRR CCCCLLLLAAAANNNNTTTTRRRR ZZZZLLLLAAAANNNNTTTTRRRR
  1563.  
  1564.      SSSSLLLLAAAANNNNVVVV2222 DDDDLLLLAAAANNNNVVVV2222                           SSSSLLLLAAAAPPPPLLLLLLLL DDDDLLLLAAAAPPPPLLLLLLLL CCCCLLLLAAAAPPPPLLLLLLLL ZZZZLLLLAAAAPPPPLLLLLLLL
  1565.  
  1566.      SSSSLLLLAAAAPPPPMMMMTTTT DDDDLLLLAAAAPPPPMMMMTTTT CCCCLLLLAAAAPPPPMMMMTTTT ZZZZLLLLAAAAPPPPMMMMTTTT             SSSSLLLLAAAAPPPPYYYY2222 DDDDLLLLAAAAPPPPYYYY2222
  1567.  
  1568.      SSSSLLLLAAAAPPPPYYYY3333 DDDDLLLLAAAAPPPPYYYY3333                           SSSSLLLLAAAAQQQQGGGGBBBB DDDDLLLLAAAAQQQQGGGGBBBB CCCCLLLLAAAAQQQQGGGGBBBB ZZZZLLLLAAAAQQQQGGGGBBBB
  1569.  
  1570.      SSSSLLLLAAAAQQQQGGGGEEEE DDDDLLLLAAAAQQQQGGGGEEEE CCCCLLLLAAAAQQQQGGGGEEEE ZZZZLLLLAAAAQQQQGGGGEEEE             SSSSLLLLAAAAQQQQSSSSBBBB DDDDLLLLAAAAQQQQSSSSBBBB CCCCLLLLAAAAQQQQSSSSBBBB ZZZZLLLLAAAAQQQQSSSSBBBB
  1571.  
  1572.      SSSSLLLLAAAAQQQQSSSSPPPP DDDDLLLLAAAAQQQQSSSSPPPP CCCCLLLLAAAAQQQQSSSSPPPP ZZZZLLLLAAAAQQQQSSSSPPPP             SSSSLLLLAAAAQQQQSSSSYYYY DDDDLLLLAAAAQQQQSSSSYYYY CCCCLLLLAAAAQQQQSSSSYYYY ZZZZLLLLAAAAQQQQSSSSYYYY
  1573.  
  1574.      SSSSLLLLAAAAQQQQTTTTRRRR DDDDLLLLAAAAQQQQTTTTRRRR                           SSSSLLLLAAAARRRR2222VVVV DDDDLLLLAAAARRRR2222VVVV CCCCLLLLAAAARRRR2222VVVV ZZZZLLLLAAAARRRR2222VVVV
  1575.  
  1576.  
  1577.  
  1578.  
  1579.  
  1580.  
  1581.                                                                        PPPPaaaaggggeeee 22224444
  1582.  
  1583.  
  1584.  
  1585.  
  1586.  
  1587.  
  1588. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  1589.  
  1590.  
  1591.  
  1592.      SSSSLLLLAAAARRRRFFFFXXXX DDDDLLLLAAAARRRRFFFFXXXX CCCCLLLLAAAARRRRFFFFXXXX ZZZZLLLLAAAARRRRFFFFXXXX             SSSSLLLLAAAARRRRUUUUVVVV DDDDLLLLAAAARRRRUUUUVVVV
  1593.  
  1594.      SSSSLLLLAAAASSSS2222 DDDDLLLLAAAASSSS2222                             SSSSLLLLAAAASSSSCCCCLLLL DDDDLLLLAAAASSSSCCCCLLLL CCCCLLLLAAAASSSSCCCCLLLL ZZZZLLLLAAAASSSSCCCCLLLL
  1595.  
  1596.      SSSSLLLLAAAASSSSEEEETTTT DDDDLLLLAAAASSSSEEEETTTT CCCCLLLLAAAASSSSEEEETTTT ZZZZLLLLAAAASSSSEEEETTTT             SSSSLLLLAAAASSSSQQQQ1111 DDDDLLLLAAAASSSSQQQQ1111
  1597.  
  1598.      SSSSLLLLAAAASSSSQQQQ2222 DDDDLLLLAAAASSSSQQQQ2222                           SSSSLLLLAAAASSSSQQQQ3333 DDDDLLLLAAAASSSSQQQQ3333
  1599.  
  1600.      SSSSLLLLAAAASSSSQQQQ4444 DDDDLLLLAAAASSSSQQQQ4444                           SSSSLLLLAAAASSSSRRRRTTTT DDDDLLLLAAAASSSSRRRRTTTT
  1601.  
  1602.      SSSSLLLLAAAASSSSSSSSQQQQ DDDDLLLLAAAASSSSSSSSQQQQ CCCCLLLLAAAASSSSSSSSQQQQ ZZZZLLLLAAAASSSSSSSSQQQQ             SSSSLLLLAAAASSSSVVVV2222 DDDDLLLLAAAASSSSVVVV2222
  1603.  
  1604.      SSSSLLLLAAAASSSSWWWWPPPP DDDDLLLLAAAASSSSWWWWPPPP CCCCLLLLAAAASSSSWWWWPPPP ZZZZLLLLAAAASSSSWWWWPPPP             SSSSLLLLAAAASSSSYYYY2222 DDDDLLLLAAAASSSSYYYY2222
  1605.  
  1606.      SSSSLLLLAAAASSSSYYYYFFFF DDDDLLLLAAAASSSSYYYYFFFF CCCCLLLLAAAASSSSYYYYFFFF ZZZZLLLLAAAASSSSYYYYFFFF             CCCCLLLLAAAAHHHHEEEEFFFF ZZZZLLLLAAAAHHHHEEEEFFFF
  1607.  
  1608.      SSSSLLLLAAAATTTTBBBBSSSS DDDDLLLLAAAATTTTBBBBSSSS CCCCLLLLAAAATTTTBBBBSSSS ZZZZLLLLAAAATTTTBBBBSSSS             SSSSLLLLAAAATTTTPPPPSSSS DDDDLLLLAAAATTTTPPPPSSSS CCCCLLLLAAAATTTTPPPPSSSS ZZZZLLLLAAAATTTTPPPPSSSS
  1609.  
  1610.      SSSSLLLLAAAATTTTRRRRDDDD DDDDLLLLAAAATTTTRRRRDDDD CCCCLLLLAAAATTTTRRRRDDDD ZZZZLLLLAAAATTTTRRRRDDDD             SSSSLLLLAAAATTTTRRRRSSSS DDDDLLLLAAAATTTTRRRRSSSS CCCCLLLLAAAATTTTRRRRSSSS ZZZZLLLLAAAATTTTRRRRSSSS
  1611.  
  1612.      SSSSLLLLAAAATTTTZZZZMMMM DDDDLLLLAAAATTTTZZZZMMMM CCCCLLLLAAAATTTTZZZZMMMM ZZZZLLLLAAAATTTTZZZZMMMM             SSSSLLLLAAAAUUUUUUUU2222 DDDDLLLLAAAAUUUUUUUU2222 CCCCLLLLAAAAUUUUUUUU2222 ZZZZLLLLAAAAUUUUUUUU2222
  1613.  
  1614.      SSSSLLLLAAAAUUUUUUUUMMMM DDDDLLLLAAAAUUUUUUUUMMMM CCCCLLLLAAAAUUUUUUUUMMMM ZZZZLLLLAAAAUUUUUUUUMMMM             SSSSOOOORRRRGGGG2222LLLL DDDDOOOORRRRGGGG2222LLLL CCCCUUUUNNNNGGGG2222LLLL ZZZZUUUUNNNNGGGG2222LLLL
  1615.  
  1616.      SSSSOOOORRRRGGGG2222RRRR DDDDOOOORRRRGGGG2222RRRR CCCCUUUUNNNNGGGG2222RRRR ZZZZUUUUNNNNGGGG2222RRRR             SSSSOOOORRRRGGGGLLLL2222 DDDDOOOORRRRGGGGLLLL2222 CCCCUUUUNNNNGGGGLLLL2222 ZZZZUUUUNNNNGGGGLLLL2222
  1617.  
  1618.      SSSSOOOORRRRGGGGRRRR2222 DDDDOOOORRRRGGGGRRRR2222 CCCCUUUUNNNNGGGGRRRR2222 ZZZZUUUUNNNNGGGGRRRR2222             SSSSOOOORRRRMMMM2222LLLL DDDDOOOORRRRMMMM2222LLLL CCCCUUUUNNNNMMMM2222LLLL ZZZZUUUUNNNNMMMM2222LLLL
  1619.  
  1620.      SSSSOOOORRRRMMMM2222RRRR DDDDOOOORRRRMMMM2222RRRR CCCCUUUUNNNNMMMM2222RRRR ZZZZUUUUNNNNMMMM2222RRRR             SSSSOOOORRRRMMMMLLLL2222 DDDDOOOORRRRMMMMLLLL2222 CCCCUUUUNNNNMMMMLLLL2222 ZZZZUUUUNNNNMMMMLLLL2222
  1621.  
  1622.      SSSSOOOORRRRMMMMRRRR2222 DDDDOOOORRRRMMMMRRRR2222 CCCCUUUUNNNNMMMMRRRR2222 ZZZZUUUUNNNNMMMMRRRR2222             SSSSPPPPBBBBTTTTFFFF2222 DDDDPPPPBBBBTTTTFFFF2222 CCCCPPPPBBBBTTTTFFFF2222 ZZZZPPPPBBBBTTTTFFFF2222
  1623.  
  1624.      SSSSPPPPOOOOTTTTFFFF2222 DDDDPPPPOOOOTTTTFFFF2222 CCCCPPPPOOOOTTTTFFFF2222 ZZZZPPPPOOOOTTTTFFFF2222             SSSSRRRRSSSSCCCCLLLL DDDDRRRRSSSSCCCCLLLL CCCCSSSSRRRRSSSSCCCCLLLL ZZZZDDDDRRRRSSSSCCCCLLLL
  1625.  
  1626.      SSSSSSSSYYYYGGGGSSSS2222 DDDDSSSSYYYYGGGGSSSS2222 CCCCHHHHEEEEGGGGSSSS2222 ZZZZHHHHEEEEGGGGSSSS2222             SSSSSSSSYYYYTTTTDDDD2222 DDDDSSSSYYYYTTTTDDDD2222 CCCCHHHHEEEETTTTDDDD2222 ZZZZHHHHEEEETTTTDDDD2222
  1627.  
  1628.      SSSSSSSSYYYYTTTTFFFF2222 DDDDSSSSYYYYTTTTFFFF2222 CCCCSSSSYYYYTTTTFFFF2222 ZZZZSSSSYYYYTTTTFFFF2222             CCCCHHHHEEEETTTTFFFF2222 ZZZZHHHHEEEETTTTFFFF2222
  1629.  
  1630.      SSSSTTTTRRRRTTTTIIII2222 DDDDTTTTRRRRTTTTIIII2222 CCCCTTTTRRRRTTTTIIII2222 ZZZZTTTTRRRRTTTTIIII2222
  1631.  
  1632.      LLLLSSSSNNNNAAAAMMMMEEEE LLLLSSSSAAAAMMMMEEEENNNN XXXXEEEERRRRBBBBLLLLAAAA
  1633.  
  1634. NNNNOOOOTTTTEEEESSSS
  1635.      SCSL does not currently support reshaped arrays.
  1636.  
  1637. SSSSEEEEEEEE AAAALLLLSSSSOOOO
  1638.      _L_A_P_A_C_K _U_s_e_r'_s _G_u_i_d_e
  1639.  
  1640.      IIIINNNNTTTTRRRROOOO____BBBBLLLLAAAASSSS1111(3S), IIIINNNNTTTTRRRROOOO____BBBBLLLLAAAASSSS2222(3S), IIIINNNNTTTTRRRROOOO____BBBBLLLLAAAASSSS3333(3S), IIIINNNNTTTTRRRROOOO____SSSSCCCCSSSSLLLL(3S),
  1641.      IIIINNNNTTTTRRRROOOO____SSSSOOOOLLLLVVVVEEEERRRRSSSS(3S)
  1642.  
  1643.  
  1644.  
  1645.  
  1646.  
  1647.                                                                        PPPPaaaaggggeeee 22225555
  1648.  
  1649.  
  1650.  
  1651.  
  1652.  
  1653.  
  1654. IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))                                              IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
  1655.  
  1656.  
  1657.  
  1658.  
  1659.  
  1660.  
  1661.  
  1662.  
  1663.  
  1664.  
  1665.  
  1666.  
  1667.  
  1668.  
  1669.  
  1670.  
  1671.  
  1672.  
  1673.  
  1674.  
  1675.  
  1676.  
  1677.  
  1678.  
  1679.  
  1680.  
  1681.  
  1682.  
  1683.  
  1684.  
  1685.  
  1686.  
  1687.  
  1688.  
  1689.  
  1690.  
  1691.  
  1692.  
  1693.  
  1694.  
  1695.  
  1696.  
  1697.  
  1698.  
  1699.  
  1700.  
  1701.  
  1702.  
  1703.  
  1704.  
  1705.  
  1706.  
  1707.  
  1708.  
  1709.  
  1710.                                                                        PPPPaaaaggggeeee 22226666
  1711.  
  1712.  
  1713.  
  1714.  
  1715.  
  1716.  
  1717.